• Title/Summary/Keyword: Vehicle drag force

Search Result 52, Processing Time 0.024 seconds

Characteristics of Fluid Flow and Heat Transfer in a Fluidized Heat Exchanger with Circulating Solid Particles

  • Ahn, Soo-Whan;Lee, Byung-Chang;Kim, Won-Cheol;Bae, Myung-Whan;Lee, Yoon-Pyo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1175-1182
    • /
    • 2002
  • The commercial viability of heat exchanger is mainly dependent on its long-term fouling characteristic because the fouling increases the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow and heat transfer in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the higher densities of particles had higher drag force coefficients, and the increases in heat transfer were in the order of sand, copper, steel, aluminum, and glass below Reynolds number of 5,000.

Modeling and Tracking Simulation of ROV for Bottom Inspection of a Ship using Component Drag Model (요소항력모델을 활용한 선저검사용 ROV 모델링 및 트래킹 시뮬레이션)

  • Jeon, MyungJun;Lee, DongHyun;Yoon, Hyeon Kyu;Koo, Bonguk
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.374-380
    • /
    • 2016
  • The large drift and angle of attack motion of an ROV (Remotely operated vehicle) cannot be modeled using the typical hydrodynamic coefficients of conventional straight running AUVs and specific slender bodies. In this paper, the ROV hull is divided into several simple-shaped components to model the hydrodynamic force and moment. The hydrodynamic force and moment acting on each component are modeled as the components of added mass force and drag using the known values for simple shapes such as a cylinder and flat plate. Since an ROV is operated under the water, the only environmental force considered is the current effect. The target ROV dealt with in this paper has six thrusters, and it is assumed that its maneuvering motion is determined using a thrust allocation algorithm. Tracking simulations are carried out on the ship’s surface near the stern, bow, and midship sections based on the modeling of the hydrodynamic force and current effect.

Verification of CFD analysis methods for predicting the drag force and thrust power of an underwater disk robot

  • Joung, Tae-Hwan;Choi, Hyeung-Sik;Jung, Sang-Ki;Sammut, Karl;He, Fangpo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.269-281
    • /
    • 2014
  • This paper examines the suitability of using the Computational Fluid Dynamics (CFD) tools, ANSYS-CFX, as an initial analysis tool for predicting the drag and propulsion performance (thrust and torque) of a concept underwater vehicle design. In order to select an appropriate thruster that will achieve the required speed of the Underwater Disk Robot (UDR), the ANSYS-CFX tools were used to predict the drag force of the UDR. Vertical Planar Motion Mechanism (VPMM) test simulations (i.e. pure heaving and pure pitching motion) by CFD motion analysis were carried out with the CFD software. The CFD results reveal the distribution of hydrodynamic values (velocity, pressure, etc.) of the UDR for these motion studies. Finally, CFD bollard pull test simulations were performed and compared with the experimental bollard pull test results conducted in a model basin. The experimental results confirm the suitability of using the ANSYS-CFX tools for predicting the behavior of concept vehicles early on in their design process.

Fairing Design of Commercial Vehicles for Drag Force Reduction (항력 저감을 위한 지상차량용 페어링 형상설계)

  • Lee, Yonggyu;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.2
    • /
    • pp.25-32
    • /
    • 2022
  • A cab roof fairing is a device that reduces the drag coefficient of a commercial vehicle, by controlling the resistance of flow separation occurring in the front when the commercial vehicle travels. Commercial vehicles are designed to facilitate aerodynamic resistance that cannot be avoided from the driving direction of the vehicle, because they must structurally load containers in the rear. For this reason, it is closely related to oil costs and environmental pollutants. In this study, the 3D fairing shape was designed based on the Rankine half body theory, and the design results were verified through aerodynamic analysis.

Aerodynamics of an intercity bus

  • Sharma, Rajnish;Chadwick, Daniel;Haines, Jonathan
    • Wind and Structures
    • /
    • v.11 no.4
    • /
    • pp.257-273
    • /
    • 2008
  • A number of passive aerodynamic drag reduction methods were applied separately and then in different combinations on an intercity bus model, through wind tunnel studies on a 1:20 scale model of a Mercedes Benz Tourismo 15 RHD intercity bus. Computational fluid dynamics (CFD) modelling was also conducted in parallel to assist with flow visualisation. The commercial CFD package $CFX^{TM}$ was used. It has been found that dramatic reductions in coefficient of drag ($C_D$) of up to 70% can be achieved on the model using tapered and rounded top and side leading edges, and a truncated rear boat-tail. The curved front section allows the airflow to adhere to the bus surfaces for the full length of the vehicle, while the boat-tails reduce the size of the low pressure region at the base of the bus and more importantly, additional pressure recovery occurs and the base pressures rise, reducing drag. It is found that the CFD results show remarkable agreement with experimental results, both in the magnitude of the force coefficients as well as in their trends. An analysis shows that such a reduction in aerodynamic drag could lead to a significant 28% reduction in fuel consumption for a typical bus on intercity or interstate operation. This could translate to a massive dollar savings as well as significant emissions reductions across a fleet. On road tests are recommended.

An Experimental Study on Internal Drag Correction of High Speed Vehicle Using Three Probes (세 가지 프로브를 이용한 초고속 비행체 내부 항력 보정 기법의 실험적 연구)

  • Jin, Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.529-537
    • /
    • 2021
  • Wind tunnel tests were carried out with a scramjet high speed vehicle. Since the scramjet engine does not have a compressor, it has a simple structure, but it is important to design the intake for the supersonic combustion in the combustion chamber. In this study, internal flow characteristics and the starting condition were analyzed by measuring the pressure at the isolator exit just before the combustion chamber, and the intake performance parameters were calculated and compared the result on every Mach number. The aerodynamic characteristics of the flow-through high speed vehicle were analyzed and internal drag correction is required to precisely analyze the aerodynamic characteristics. In this paper, an experimental technique using three probes for internal drag correction was proposed. By applying internal drag correction, it was able to figure out the effect of the internal flow on the aerodynamic force of the vehicle.

A Study on the Optimum Design of SUV Rear Spoiler (SUV 차량 리어 스포일러 최적 형상에 관한 연구)

  • Park, Dong-Kyou
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.689-694
    • /
    • 2018
  • Recently, fuel consumption efficiency has become the most important issue in the vehicle development process due to the problem of environmental pollution. The air flow patterns of the vehicle body line and rear part are the most important elements affecting the fuel consumption efficiency. Especially, the airflow pattern of the vehicle rear part is the most important design factor to be considered in rear spoiler design. In this paper, the control factors affecting the airflow of the rear spoiler are determined, the airflow sensitivity of these control factors are tested and, then, the optimized control factors to reduce the airflow drag force are proposed. The model of optimized control factors is tested and the values of the optimized control factors are changed by analyzing the S/N ratio and mean value. Finally, the new modified model incorporating the optimized control factors is tested in an air flow tunnel and its ability to decrease the air drag and reduce the cost is verified.

Experimental Study on the Effects of Surface Shape and Roughness on the Magnus Effect of Rotor Sails (로터 세일의 표면 형상과 조도 변화에 따른 마그누스 효과에 관한 실험연구)

  • Young-Jin Kim;Jae-Yeun Hwang;Byoung-Kwon Ahn
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.5
    • /
    • pp.351-357
    • /
    • 2023
  • In this study, we devised methods to enhance the efficiency of rotor sails which have been applied as one of the energy saving devices of ships. The idea of the study originated from the notion that installing protrusions or increasing the surface roughness on the smooth surface of the rotor sail could delay the separation of the incoming wind flow and consequently increase the lift force. Five cylinder models were considered and tested in an open-type wind tunnel at Chungnam National University. A smooth surface cylinder exhibits the highest lift-to-drag ratio at a specific Reynolds number, and as the Reynolds number increases this value decreases sharply. The variation in this typical Magnus force can be significantly improved by altering the surface shape and roughness of the rotor sail. It has been observed that increasing the surface roughness improves the lift characteristics, resulting in increased efficiency. Furthermore, it revealed that the reverse Magnus effect which may occur during actual operation in the low spin ratio region can be significantly enhanced.

Development of Vehicle Tunnel Ventilation System (도로터널 환기시스템 개발연구)

  • Lee, Chang-Woo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.71-74
    • /
    • 2008
  • This paper aims at studying the key design elements for the optimal ventilation system design, developing the design models and suggesting the design guidelines. The key elements include the basic exhaust emission rate, wall friction coefficient, vehicle drag coefficient and slip streaming effect, jet fan operating efficiency, natural ventilation force and installation scheme for jet fans and ventilation monitors in tunnel. The design models developed in this study are one-dimensional ventilation simulator to analyze the air flow, pressure profile and pollutant dispersion inside and outside tunnel, expert model to choose the optimal ventilation method, and the ventilation characteristic chart to evaluate the preliminary ventilation system. The study results are reflected in the design guideline for road tunnel ventilation system.

  • PDF

Optimal Swimming Motion for Underwater Robot, Crabster (수중유영로봇 Crabster의 최적 유영 구현)

  • Kim, Daehyun;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.4
    • /
    • pp.284-291
    • /
    • 2012
  • Recently, development of underwater robot has actively been in progress in the world as ROV(Remotely Operator Vehicle) and AUV(Autonomous Unmmanded Vehicle) style. But KIOST(Korea Institute of Ocean Science and Technology), beginning in 2010, launched the R&D project to develop the robot, dubbed CRABSTER(Crab + (Lob)ster) in a bid to enhance the safety and efficiency of resource exploration. CRABSTER has been designed to be able to walk and swim with its own legs without screws. Among many research subjects regarding CRABSTER, optimal swimming patterns are handled in this paper. In previous studies, drag forces during one period with different values for angle of each joint were derived. However kinematics of real-robot and fluid-dynamics are not considered. We conducted simulations with an optimization algorithm for swimming by considering simplified fluid dynamics in this paper. Drag-coefficients applied to the simulation were approximated values calculated by CFD(Computational Fluid Dynamics : Tecplot 360, ANSYS). In addition, optimized swimming patterns were applied to a real robot. The experiments with the real robot were conducted in circumstances in the water. As a result, when the experiments were carried out in the water, a regular pattern of drag force output came out depending on the movement of the robot. We confirmed the fact that the drag forces from the simulation and the experiment has a high similarity.