• Title/Summary/Keyword: Vehicle design

Search Result 4,929, Processing Time 0.032 seconds

A Design of N-Screen based Monitoring System for Marine-Facility (N-Screen 기반의 해양시설물용 모니터링 시스템 설계)

  • Kim, Ji-Yoon;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.613-622
    • /
    • 2015
  • The convergence of IT technology and marine facilities monitoring system is needed for effective monitoring systems to marine facilities. Especially the spread of smart device such as smart phone, smart pad, smart TV provide an environment that can check the status of the marine facility for marin facilities manager. However, smart phones and smart pads are used in a variety of OS used. Thus the monitoring system of the various service environments is difficult. In addition, There is inconvenience that must individually developed monitoring system for each device. In order to solve this problem NMMS (N-Screen Marine-facility Monitoring System) is proposed. NMMS is consist of Real-time monitoring system, Fault diagnosis system, Data storage system. To improve variety of smart devices accessibility, we use HTML 5. Through NMMS, marine facilities manager can use smart device such as PC, Notebook, smart phone, smart pad for marine facilities monitoring.

Load Carrying Capacity Evaluation of Single Span Bridge using Impact Factor Response Spectrum (충격계수 응답스펙트럼을 이용한 단경간 교량의 내하력 평가)

  • Lee, Huseok;Roh, Hwasung;Park, Kyung-Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.12
    • /
    • pp.730-736
    • /
    • 2016
  • In a previous study, the impact factor response spectrum and corresponding method for evaluating the load carrying capacity of bridges was suggested to improve the existing evaluation method. To verify the applicability of the suggested method, which is based on the frequency of bridges, the dynamic characteristic test for an actual single span simply-supported bridge was conducted. Through a field test under ambient traffic conditions, the dynamic response of the bridge was obtained using wireless accelometers and its fundamental frequency was identified. The peak impact factor was determined from the identified frequency and the impact factor response spectrum. The load carrying performance variation of the bridge was estimated considering the performance reduction factor, which was calculated using the current and previous natural frequency and impact factor. From the result, the load carrying capacity of the bridge was decreased, but the capacity was still enough because its value is greater than the design live load. Through the overall procedures and technical details presented in this paper, the suggested evaluation method can be applied to actual bridges with the acceleration data measured under ambient traffic conditions and the impact factor response spectrum.

Assessment of Train Running Safety, Ride Comfort and Track Serviceability at Transition between Floating Slab Track and Conventional Concrete Track (플로팅 슬래브궤도와 일반 콘크리트궤도 접속구간에서의 열차 주행 안전, 승차감 및 궤도 사용성 평가)

  • Jang, Seung-Yup;Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.48-61
    • /
    • 2012
  • It is of great importance to assure the running safety, ride comfort and serviceability in designing the floating slab track for mitigation of train-induced vibration. In this paper, for this, analyzed are the system requirements for the running safety, ride comfort and serviceability, and then, the behavior of train and track at the floating slab track including the transition zone to the conventional concrete slab track according to several main design variables such as system natural frequency, arrangement of spring at transition, spacing of spring isolators, damping ratio and train speed, using the dynamic analysis technique considering the train-track interaction. The results of this study demonstrate that the discontinuity of the support stiffness at the transition results in a drastic increase of the dynamic response such as wheel-rail interaction force, rail bending stress and rail uplift force. Hence, it is efficient to decrease the spacing of springs or to increase the spring constants at the transition to obtain the running safety and serviceability. On the other hand, the vehicle body acceleration as a measure of ride comfort is little affected by the discontinuity of the stiffness at the transition, but by the system tuning frequency; thus, to obtain the ride comfort, it is of great significance to select the appropriate system tuning frequency. In addition, the effects of damping ratio, spacing of springs and train speed on the dynamic behavior of the system have been discussed.

Construction and Experiment of an Educational Radar System (교육용 레이다 시스템의 제작 및 실험)

  • Ji, Younghun;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.2
    • /
    • pp.293-302
    • /
    • 2014
  • Radar systems are used in remote sensing mainly as space-borne, airborne and ground-based Synthetic Aperture Radar (SAR), scatterometer and Doppler radar. Those systems are composed of expensive equipments and require expertise and professional skills for operation. Because of the limitation in getting experiences of the radar and SAR systems and its operations in ordinary universities and institutions, it is difficult to learn and exercise essential principles of radar hardware which are essential to understand and develop new application fields. To overcome those difficulties, in this paper, we present the construction and experiment of a low-cost educational radar system based on the blueprints of the MIT Cantenna system. The radar system was operated in three modes. Firstly, the velocity of moving cars was measured in Doppler radar mode. Secondly, the range of two moving targets were measured in radar mode with range resolution. Lastly, 2D images were constructed in GB-SAR mode to enhance the azimuth resolution. Additionally, we simulated the SAR raw data to compare Deramp-FFT and ${\omega}-k$ algorithms and to analyze the effect of antenna positional error for SAR focusing. We expect the system can be further developed into a light-weight SAR system onboard a unmanned aerial vehicle by improving the system with higher sampling frequency, I/Q acquisition, and more stable circuit design.

Numerical Analysis of Supercavitating Flows of Two-Dimensional Simple Bodies (2차원 단순 물체의 초공동 유동에 대한 수치해석)

  • Lee, Hyun-Bae;Choi, Jung-Kyu;Kim, Hyoung-Tae
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.436-449
    • /
    • 2013
  • In this paper, a numerical analysis is carried out to study the characteristics of supercavitating flows and the drag of relatively simple two-dimensional and axisymmetric bodies which can be used for supercavity generation device, cavitator, of a high-speed underwater vehicle. In order to investigate the suitability of numerical models, cavity flows around the hemispherical head form and two-dimensional wedge are calculated with combinations of three turbulence models(standard $k-{\epsilon}$, realizable $k-{\epsilon}$, Reynolds stress) and two cavitation models(Schnerr-Sauer, Zwart-Gerber-Belamri). From the results, it is confirmed that the calculated cavity flow is more affected by the turbulence model than the cavitation model. For the calculation of steady state cavity flows, the convergence in case of the realizable $k-{\epsilon}$ model is better than the other turbulence models. The numerical result of the Schnerr-Sauer cavitation model is changed less by turbulence model and more robust than the Zwart-Gerber-Belamri model. Thus the realizable $k-{\epsilon}$ turbulence model and the Schnerr-Sauer cavitation model are applied to calculate supercavitating flows around disks, two dimensional $10^{\circ}$ and $30^{\circ}$ wedges. In case of the disk, the cavitation number dependences of the cavity size and the drag coefficient predicted are similar to either experimental data or Reichardt's semi-empirical equations, but the drag coefficient is overestimated about 3% higher than the Reichardt's equation. In case of the wedges, the cavitation number dependences of the cavity size are similar to experimental data and Newman's linear theory, and the agreement of the cavity length predicted and Newman's linear theory becomes better as decreasing cavitation number. However, the drag coefficients of wedges agree more with experimental data than those of Newman's analytic solution. The cavitation number dependences of the drag coefficients of both the disk and the wedge appear linear and simple formula for estimating the drag of supercavitating disks and wedges are suggested. Consequently, the CFD scheme of this study can be applied for numerical analysis of supercavitating flows of the cavitator and the cavitator design.

Analysis on the Driving Safety and Investment Effect using Severity Model of Fatal Traffic Accidents (대형교통사고 심각도 모형에 의한 주행안전성 및 투자효과 분석)

  • Lim, Chang-Sik;Choi, Yang-Won
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.3
    • /
    • pp.103-114
    • /
    • 2011
  • In this study, we discuss a fatal accident severity model obtained from the analysis of 112 crash sites collected since 2000, and the resulting relationship between fatal accidents and roadway geometry design. From the 720 times computer simulations for improving driving safety, we then reached the following conclusions:. First, the result of cross and frequency-analyses on the car accident sites showed that 43.7% of the accidents occurred on the curved roads, 60.7% on the vertical curve section, 57.2% on the roadways with radius of curvature of 0 to 24m, 83.9% on the roads with superelevation of 0.1 to 2.0% and 49.1% on the one-way 2-lane roads; vehicle types involved are passenger vehicles (33.0%), trucks (20.5%) and buses (14.3%) in order of frequency. The results also show that the superelevation is the most influencing factor for the fatal accidents. Second, employing the Ordered Probit Model (OPM), we developed a severity model for fatal accidents being a function of on various road conditions so as to the damages can be predicted. The proposed model possibly assists the practitioners to predict dangerous roadway segments, and to take appropriate measures in advance. Third, computer simulation runs show that providing adequate superelevation on the segment where a fatal accident occurred could reduce similar fatal accidents by at least 85%. This result indicates that the regulations specified in the Rule for Road Structure and Facility Standard (description and guidelines) should be enhanced to include more specific requirement for providing the superelevation.

A Study on the Influence of Consumer Type on Consumer Intention to Purchase Eco-friendly Vehicles in the Service Management of Convergence Industry (융복합 산업의 서비스경영에서 소비자 유형이 소비자의 친환경자동차에 대한 구매의도에 미치는 영향에 관한 연구)

  • Yim, Ki-Heung
    • Journal of Digital Convergence
    • /
    • v.15 no.10
    • /
    • pp.221-232
    • /
    • 2017
  • In recent years, the development and market participation of major makers of next-generation eco-friendly vehicles has been accelerating. Consumer interest has also increased. Consumer characteristics, consumption type, characteristics of next-generation eco-friendly vehicles, and government policies on next-the results of this study are as follows. As a result of this study, it was found that the characteristics of consumers (by sex, age, monthly average income), types of consumers (price value pursuit type, individual value pursuit type), There was no significant difference between the consumers, and the purchasing intention was not significantly different by gender, age, and monthly income, but there was a significant difference in purchase intention according to the type of consumer. The positive effects of consumer purchase behavior on brand image, color, design, etc, have positive (+) effect on eco - friendly vehicles. And social environment value seeking type among consumer types are significant in relation to purchase intention. To have three support the government's carbon dioxide (per ton of 5,000 won, per ton of 10,000 won), national or local government vehicle price support directly gasolin tax, disel tax, carbon taxes, such as fuel-related tax relief, etc. was found to have positive effect.

Division of Homogeneous Road Sections for National Highway by Genetic Algorithms (유전자 알고리즘을 적용한 국도의 동질성 구간 분할)

  • Oh, Ju-Sam;Lim, Sung-Han;Cho, Yoon-Ho
    • International Journal of Highway Engineering
    • /
    • v.7 no.4 s.26
    • /
    • pp.41-47
    • /
    • 2005
  • Traffic data such as traffic volume, speed, and vehicle Class are very important basic data for the plan and design of highway. Based on traffic data, the future service level of a specific highway and geometry of newly constructed or expended road is predicted and determined. The Ministry of Construction & Transportation has simultaneously surveyed coverage count and permanent count at highways since 1985. Traffic volume survey sections were determined at jointed nodes of highways and jointed nodes of highways and other roads such as freeway and local highway. Volume survey was performed at these sections. The premise to decide these sections is assumed that links between jointed nodes of main highways exhibit similar traffic characteristics. Recently, due to the change of highway geometries such as construction of detour road and installations of traffic facilities such as installation of media, traffic characteristics of the existing traffic volume survey sections was changed. To reflect these changes, traffic characteristics at homogeneous road sections was widely evaluated and analyzed. Using Genetic Algorithms, a model was developed for the evaluation of traffic characteristics at homogeneous road sections. Traffic volume survey sections were then determined through the application of the developed model for current traffic system.

  • PDF

Study of Deepsea Mining Robot "MineRo" Using Table of Orthogonal Arrays (직교 배열표를 이용한 심해저 채광로봇 미내로의 주행 특성 연구)

  • Lee, Chang-Ho;Kim, Hyung-Woo;Choi, Jong-Su;Yeu, Tae-Kyeong;Lee, Min-Uk;Oh, Jae-Won;Hong, Sup
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.152-159
    • /
    • 2014
  • KRISO(Korea Research Institute of Ships & Ocean Engineering) designed and manufactured a pilot mining robot called "MineRo" in 2012. MineRo is composed of four track modules. In general, much time and money are needed for deep-sea tests. Therefore, a numerical analysis to predict the dynamic behaviors has to be performed before a deep-sea test. In the numerical analysis, the information about the mining robot and soil properties are the most important factors to analyze the driving performance and dynamic response of MineRo. A terra-mechanics model of extremely cohesive soft soil is implemented in the form of the relationships between the normal pressure and sinkage, and between the shear stress and shear displacement. It is possible to acquire information about MineRo from the CAD model in the design phase. The Wong model is applied to the terra-mechanics model. This model is necessary to acquire many soil coefficients for a numerical analysis. However, in soil testing, the amount of soil property data obtained is limited. Moreover, it is difficult to analyze all of the cases for the many soil coefficients. In this paper, the dynamic behaviors of MineRo are analyzed according to the driving velocity, steering ratio, and variable extremely cohesive soft soil properties using a table of orthogonal arrays. The dynamic responses of MineRo are the turning radius, sinkage, and slip ratio. The relationships between the dynamic responses and variable soil properties are derived for MineRo.

Numerical Study on the Performance Assessment for Defrost and De-Icing Modes (승용차의 제상 및 성에 제거 성능 평가를 위한 수치해석적 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Kim, Kyung-Chun;Ji, Ho-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.2
    • /
    • pp.161-168
    • /
    • 2011
  • The heating, ventilating, air conditioning (HVAC) system is a very important part of an automotive vehicle: it controls the microclimate inside the passenger's compartment and removes the frost or mist that is produced in cold/rainy weather. In this study, the numerical analysis of the defrost duct in an HVAC system and the de-icing pattern is carried out using commercial CFX-code. The mass flow distribution and flow structure at the outlet of the defrost duct satisfied the duct design specification. For analyzing the de-icing pattern, additional grid generation of solid domain of ice and glass is pre-defined for conductive heat transfer. The flow structure near the windshield, streakline, and temperature fields clearly indicate that the de-icing capacity of the given defrost duct configuration is excellent and that it can be operated in a stable manner. In this paper, the unsteady changes in temperature, water volume fraction, and static enthalpy at four monitoring points are discussed.