• Title/Summary/Keyword: Vehicle design

Search Result 4,949, Processing Time 0.032 seconds

Prototype Design for unmanned aerial vehicle-based BigData Processing (무인항공기 기반 빅데이터 처리 시스템의 프로토타입 설계)

  • Kim, Sa Woong
    • Smart Media Journal
    • /
    • v.5 no.2
    • /
    • pp.51-58
    • /
    • 2016
  • Recently, the unmanned aerial vehicle Drone technology is attracting new interest around the world. The versatilities in science, military, marketing, sports, and entertainment fields are the driving force of the drone fever. Thus, the potential power of future industrial is expected as the application range is extensive. In this paper, we design and propose the prototype of unmanned aerial vehicle-based bigdata processing system.

Design and Implementation of Air Vehicle Test Equipment for Unmanned Aerial Vehicle (무인항공기 점검을 위한 비행체점검장비 설계 및 구현)

  • Kwon, Sang-eun
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.251-260
    • /
    • 2020
  • Unlike manned aerial vehicles, because an unmanned aerial vehicle (UAV) has a limitation which allows only remote test during flights, it is very important to maintain the high reliability of the vehicle through pre- and post-flight tests. To this end, this paper designed an air vehicle test equipment (AVTE) for UAV which meets the derived hardware and software requirements. Based on this design, the AVTE was implemented in accordance with the actual test scenario. The implemented AVTE has the advantage of reducing the time and cost required for the test of UAV by allowing the operator to perform automatic or manual tests for necessary parts in various situations such as before and after starting engine and pre- and post-flight tests. Furthermore, this study is expected to help with the design and implementation of AVTE for other UAVs.

Staging and Injection Performance Analysis of Small Launch Vehicle Based on KSLV-II (한국형발사체에 기반한 소형발사체의 스테이징 및 투입성능 분석)

  • Jo, Min-Seon;Kim, Jae-Eun;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.155-166
    • /
    • 2021
  • In this paper, design study of a small two-stage launch vehicle is undertaken for the dedicated launch of the Compact Advanced Satellite 500 (CAS500)-class satellite into the Low Earth Orbit (LEO) by modifying the second and third stages of the Korean Space Launch Vehicle II (KSLV-II). Since the KSLV-II has three stages, velocity increment is newly distributed for the two-stage small launch vehicle. For this end, the staging design is carried out for the design parameters such as stage mass ratios, structural coefficients and engine options for each stage followed by trajectory analysis. Investigation of the results provides the combination of design parameters for the small launch vehicle for the dedicated launch of 500 kg-class satellite into LEO.

A Development of Green Transportation Design for Special Identity of Jecheon Area - centered on Exterior Design for Development of Design Business - (제천지역의 특성화를 위한 친환경운송수단 디자인개발 - 디자인비즈니스 개발을 위한 익스테리어 디자인을 중심으로 -)

  • Mun Keum-Hi
    • Archives of design research
    • /
    • v.19 no.4 s.66
    • /
    • pp.175-186
    • /
    • 2006
  • In the 21C, each nation controls exhaust fumes from automobiles and makes an effort to develop alternative energy because of serious environmental problem. Jechon area has many historical and cultural archeological sites. And Jechon city sponsors various cultural events. But the way of transportation which is connected with Jecheon and around sightseeing places is general and not ready yet. Therefore, if a special means of vehicle is developed, it could play an another role of sightseeing resources. Special identity of Jecheon area for establishment of green vehicle traffic system which gives Jecheon area specific character was investigated for theoretical background. Traffic system was studied for establishment of direction through existent successful case study. Moreover content, method, structure and advantage & shortcoming etc. of vehicle that use green energy resource such as solar car, fuel cell car, hybrid car, natural gas car etc. were examined. The suitable means of vehicle for Jechon area was proposed to three directions with research and investigation. After comparison and investigation by inquiry of each section's experts, the most suitable traffic system of which energy resource of car, form of vehicles, the complement, dimension of vehicles etc. were decided. Design proposal should be drawn according to process of automobile design in decided direction. Special Exterior design of vehicle that use green energy resource connecting Jecheon and around area should be suggested in Jecheon City Hall and Chungchong-bukdo provincial office for vivify image of cleanliness area.

  • PDF

A Study on the Optimum Design of Railway Vehicle Suspension Characteristics (철도차량 현가특성의 최적설계에 관한 연구)

  • 조동현;임진수
    • Journal of the Korean Society for Railway
    • /
    • v.2 no.2
    • /
    • pp.6-12
    • /
    • 1999
  • In this study, the most important suspension characteristics of railway vehicle, such as primary and secondary stiffness, are optimized to maximize ride qualify. Critical speed, secondary suspension stroke oil tangent track and derailment coefficient on the maximum curvature, are selected as the performance constraints. Piecewise linear curving model is used to evaluate derailment coefficient where it is assumed that wheel/rail contacts occurs at tread or at idealized flange. The combined design procedure is used to optimize above design variables at the same time.

  • PDF

Kinematic Design Sensitivity Analysis of Vehicle Suspension Systems using a Numerical Differentiation Method (수치미분에 의한 차량 현가장치의 기구학적 민감도 해석)

  • 탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.128-137
    • /
    • 1998
  • A numerical approach for performing kinematic design sensitivity analysis of vehicle suspension systems is presented. Compared with the conventional analytical methods, which require explicit derivation of sensitivity equations, the proposed numerical method can be applied to any type of suspension systems without obtaining sensitivity equations, once any kinematic analysis procedure is established. To obtain sensitivity equations, a numerical differentiation algorithm that uses the third order Lagrange polynomial is developed. The algorithm efficiently and accurately computes the sensitivity of various vehicle static design factors with respect to kinematic design variables. Through a suspension design problem, the validity and usefulness of the method is demonstrated.

  • PDF

Design.Manufacture on X-wing type flapping vehicle (X-wing type 날개짓 비행체의 설계.개발)

  • Yoon, Kwang-Joon;Park, Joon-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1437-1440
    • /
    • 2008
  • This research describes about designing and manufacturing X-wing type flapping micro aerial vehicle which intends to improve the performance of one-pair wing flapping vehicle with innovated design. This design, X-wing as we call, was introduced for some time ago from many laboratories but still there hasn’t any reports dealing on its theoretical or numerical analysis. By manufacturing the X-wing with our own design and succeeding its flight test will give us the general idea on X-wing which may guide us to conduct the numerical and experimental analysis later on. We focused to design the X-wing and introduce some conceptual theories about its characteristics on this report.

  • PDF

Vehicle Steering Characteristics Simulation by a Driver Model (운전자 모델을 사용한 차량의 조향특성 시뮬레이션)

  • Lee, J.S.;Baek, W.K.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.61-68
    • /
    • 2003
  • Steering characteristics is an important factor in the evaluation of vehicle quality. To estimate steering characteristics in the vehicle conceptual design stage, vehicle dynamics simulation methods are very efficient. However, it is often difficult to simulate vehicle dynamics for the specific driving scenarios in open-loop driving environment. An efficient driver-in-the-loop vehicle model will be efficient for this job. A good tire model is also very important for the accurate vehicle dynamics simulation. In this research, a driver model is used to simulate vehicle steering dynamics for a 8-dof vehicle model with STI(Systems Technology, Inc.) tire model. For the demonstration of this model, a SUV(sports utility vehicle) and a sedan were simulated.

  • PDF

Design and Making of a Handmade Vehicle with a Formula in 2016 (2016 포뮬러 형태의 자작자동차 설계 및 제작)

  • Kim, Jin-Seok;Shin, Dae-Soo;Shin, Min-Soo;Kim, Seong Keol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.82-88
    • /
    • 2017
  • In 2016, a handmade vehicle called to the VF-3 was designed and manufactured as a formula typed car. Prior to manufacturing and assembly, the impact attenuator was analyzed through ANSYS LS-DYNA, and the results were applied to the VF-3. The dynamical performance of the VF-3, such as the acceleration and circling simulations, was also assessed through MSC-ADAMS. The results were applied and compared after the Korean Society of Automotive Engineers (KSAE) competition. There was only a 0.8 s difference in the acceleration test. In order that the frame was not twisted by thermal deformation, Argon-TIG welding was used and a zig was designed. Another zig was designed to have the exact position for the hardpoints in the suspension system. Most of the parts were made with aluminum 7050 for reduced weight. The VF-3 won the third prize in the 2016 KSAE Student Handmade Vehicle competition.

Optimal Design of MR Shock Absorbers Using Finite Element Method (유한요소법을 이용한 MR 쇽 업소버의 최적설계)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.375-380
    • /
    • 2007
  • This paper presents optimal design of controllable magnetorheological (MR) shock absorbers for passenger vehicle. In order to achieve this goal, two MR shock absorbers (one for front suspension; one for rear suspension) are designed using an optimization methodology based on design specifications for a commercial passenger vehicle. The optimization problem is to find optimal geometric dimensions of the magnetic circuits for the front and rear MR shock absorbers in order to improve the performance such as damping force as an objective function. The first order optimization method using commercial finite element method (FEM) software is adopted for the constrained optimization algorithm. After manufacturing the MR shock absorbers with optimally obtained design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of conventional shock absorbers. In addition, vibration control performances of the full-vehicle installed with the proposed MR shock absorbers are evaluated under bump road condition and obstacle avoidance test.

  • PDF