• 제목/요약/키워드: Vehicle applications

검색결과 822건 처리시간 0.029초

VANET 기반의 긴급 차량 우선통과 서비스를 위한 인증 기법 (An Authentication Scheme for Emergency Vehicle Priority Transit Service in VANET)

  • 윤영균;정수환
    • 한국통신학회논문지
    • /
    • 제33권10C호
    • /
    • pp.749-757
    • /
    • 2008
  • 본 논문에서는 VANET (Vehicular Ad-hoc Networks) 기반의 첨단 교통관리 서비스에서 실시간 교통제어를 위해 필요한 긴급 차량 우선통과 시스템에서 요구되고 있는 인증 기법을 제안한다. 제안된 인증 기법은 교차로 상에서 긴급 차량에 신호 우선권을 부여하기 위한 대리 서명 기법을 적용하여 권한을 부여된 제어 권한을 인증하여 긴급차량들의 소통 상태 확보 및 다른 차량들의 안전성을 향상시킨다. 또한 인가된 제어 권한을 확인하기 위해 필요한 식별 절차에 필요한 ID를 제공하는 대리 서명 기법을 적용하므로 프라이버시를 보호하는 인증 기능을 제공한다.

CAN을 활용한 스마트폰 기반 차량 편의장치 제어 서비스 개발 (Developing Smartphone-based Control Service of Vehicle's Convenience Features using CAN)

  • 전병찬;차시호;조상엽
    • 디지털산업정보학회논문지
    • /
    • 제8권1호
    • /
    • pp.9-15
    • /
    • 2012
  • Multiple convenience features have been getting installed in recently released cars. However, the control of them has many uncomfortable matters yet. To resolve them, it is needed to study how to use easier the convenience features and control them remotely. Currently, wide range of convergence services are being released in various industries by using smartphone and smartphones with its state-of-the-art functions also are being released. In this paper, we design and implement smartphone-based applications for controling the vehicle's convenience features to control the vehicle convenience features with smartphone. To do this, we configure CAN (Controller Area Network) communication between the vehicle's various convenience features, and establish MCU (Micro Controller Unit) to control each feature. We also connect between the MCU and smartphones to make them available for the remote control. We can control lights, turn signals, audio, windows, air conditioner, and so on with the implemented smartphone-based control service of vehicle's convenience features using CAN remotely.

연료전지 차량의 전기적 절연 특성에 관한 연구 (Study on the Electric Insulation Characteristics in a Fuel Cell Vehicle)

  • 유정한;김덕환;김주한;정귀성;금영범;김세훈;안득균
    • 한국수소및신에너지학회논문집
    • /
    • 제23권2호
    • /
    • pp.150-155
    • /
    • 2012
  • Polymer Electrolyte Membrane Fuel Cell (PEMFC) stack power output is needed to be approximately 100 kW to meet the requirements of automotive applications. In order to secure the electric safety for drivers, passengers and mechanics, it is very important to understand phenomena of an electric insulation in a fuel cell vehicle. In this study, we studied the electric insulation properties and the insulation resistance of stack, system and vehicle in the field of fuel cell was estimated at the applied voltage of 500 V, respectively. Also we discussed the insulation factors such as the conductivity of coolant, the element of vehicle design and the intrinsic resistance of the vehicle components.

가상현실 기반의 차량 시뮬레이터의 현실감 향상에 관한 연구 (A Study on Improving the Reality of the Vehicle Simulator Based on the Virtual Reality)

  • 최영일;권성진;장석;김규희;조기용;서명원
    • 대한기계학회논문집A
    • /
    • 제28권8호
    • /
    • pp.1116-1124
    • /
    • 2004
  • In these days, a vehicle simulator has been developed with a VR(Virtual Reality) system. A VR system must provide a vehicle simulator with natural interaction, sufficient immersion and realistic images. In addition, a VR system must present a driver with the realistic driving situation. To achieve these, it is important to obtain a fast and uniform rendering performance regardless of the complexity of virtual worlds. In this paper, the factors to improve the reality for the VR based vehicle simulator have been investigated. For the purpose, the modeling and the rendering methods which offer an improved performance for complex VR applications as the 3D road model have been implemented and verified. Then, we experiment on the influence of graphic and sound factors to the driver, and analyze each result for improving the reality such as the driver's viewport, the form of texture, the lateral distance of the side object, and the sound effect. These factors are evaluated on the driving system which is constructed for qualitative analysis. The research results could be used for improving the reality of the VR based vehicle simulator.

Study of Bidirectional DC-DC Converter Interfacing Energy Storage for Vehicle Power Management Using Real Time Digital Simulator (RTDS)

  • Deng, Yuhang;Foo, Simon Y.;Li, Hui
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.479-489
    • /
    • 2011
  • The bidirectional dc-dc converter, being the interface between Energy Storage Element (ESE) and DC bus, is an essential component of the power management system for vehicle applications including electric vehicle (EV), hybrid electric vehicle (HEV), and fuel cell vehicle (FCV). In this paper, a novel multiphase bidirectional dc-dc converter interfacing with battery to supply and absorb the electric energy in the FCV system was studied with the help of real time digital simulator (RTDS). The mathematical models of fuel cell, battery and dc-dc converter were derived. A power management strategy was developed and first simulated in RTDS. A Power Hardware-In-the-Loop (PHIL) simulation using RTDS is then presented. The main challenge of this PHIL is the requirement for a highly dynamic bidirectional Simulation-Stimulation (Sim-Stim) interface. This paper describes three different interface algorithms. The closed-loop stability of the resulting PHIL system is analyzed in terms of time delay and sampling rate. A prototype bidirectional Sim-Stim interface is designed to implement the PHIL simulation.

최소 자승법을 이용한 하이브리드용 리튬이온 배터리 모델링 및 특성분석 (Modeling and Characteristic Analysis of HEV Li-ion Battery Using Recursive Least Square Estimation)

  • 김호기;허상진;강구배
    • 한국자동차공학회논문집
    • /
    • 제17권1호
    • /
    • pp.130-136
    • /
    • 2009
  • A lumped parameter model of Li-ion battery in hybrid electric vehicle(HEV) is constructed and system parameters are identified by using recursive least square estimation for different C-rates, SOCs and temperatures. The system characteristics of pole and zero in frequency domain are analyzed with the parameters obtained from different conditions. The parameterized model of Li-ion battery indicates highly dependant of temperatures. The system pole and internal resistance changes 6.6 and 18 times at $-20^{\circ}C$, comparing with those at $25^{\circ}C$, respectively. These results will be utilized on constructing model-based state observer or an on-line identification and an adaptation of the model parameters in battery management systems for hybrid electric vehicle applications.

Design and Implementation of a Connected Car Platform Architecture for New ICT Convergence Services

  • Kook, Joongjin
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권10호
    • /
    • pp.47-54
    • /
    • 2017
  • In this paper, we propose a connected car platform architecture called Mobile Second for developing of verity convergence services. A Mobile Second platform architecture is designed to provide more powerful and diverse convergence services for vehicles and drivers by applying technologies of Connected Car and ICT Convergence in various ways. The Mobile Second platform is implemented by applying Tizen IVI and Android to hardware platforms for IVI, Nexcom's VTC1010 and Freescale's i.MX6q/dl respectively. The Mobile Second platform provides the driver with the vehicle's information via IVI devices, mobile devices and PCs, etc., and provides Vehicle Selective Gateway(VSG) and Vehicle Control Framework for the driver to control his/her vehicle, and also provides a web framework to enable the use of VSG's APIs for the monitoring and controlling the vehicle information in various mobile environments as well as IVI devices. Since the Mobile Second platform aims to create new variety of services for Connected Car, it includes service frameworks for Smart Care / Self diagonostics, Mood & Entertainment services, and Runtime, libraries and APIs needed for the development of related applications. The libraries given by the Mobile Second Platform provides both a native library for native application support and a Java Script-based library for web application support, minimizing the dependency on the platform and contributing the convenience of developers at the same time.

MEMS형 자세측정장치를 이용한 고속 기동 무인 잠수정 자율 조종 제어기에 대한 HILS (Hardware in Loop Simulation on Autopilot Controller with MEMS AHRS for High Speed Unmanned Underwater Vehicle)

  • 황아롬;윤선일;송지훈
    • 한국해양공학회지
    • /
    • 제26권5호
    • /
    • pp.81-86
    • /
    • 2012
  • Unmanned underwater vehicles have many applications in scientific, military, and commercial areas because of their autonomy. In many cases, an underwater vehicle adopts a control algorithm based on a tactical inertial sensor for precise control. However, a control algorithm that uses a tactical inertial sensor is unsuitable for some underwater vehicle missions such as torpedo decoys. This paper proposes a control algorithm for an unmanned underwater vehicle that does not require precise control. The control algorithm proposed for an unmanned underwater vehicle adopts a low cost MEMS inertial sensor, and simulations using the specifications of the MEMS inertial sensor under development are performed to verify the control algorithm under a real environment. The results of these simulations are presented.

차량안전 응용을 위한 임의 조기 비컨방송 (Random Early Beacon Broadcast (REB2) for Cooperative Vehicle Safety Applications)

  • 정한유;응웬 호아 흥
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1017-1021
    • /
    • 2020
  • V2X 통신에서 차량들은 비컨(Beacon)이라고 불리는 메시지의 주기적 방송을 통해 주변 차량들이 송신 차량의 이동상태를 정확하게 예측할 수 있도록 지원한다. 특히, 이동 적응형 비컨 방송 기술(MAB2)은 일정한 한도 내에서 연속된 비컨 손실이 발생하더라도 송신차량의 추적 오차를 임계치 이하로 유지할 수 있는 비컨방송기법이다. 본 논문에서는 MAB2 기술이 야기할 수 있는 비컨의 노후화 문제를 해결하기 위한 임의 조기 비컨 방송 기법을 제시하고, 시뮬레이션을 통해 충돌사고가 발생할 수 있는 100 m 이내 근거리 차량의 추적실패확률이 1/10 이하로 감소함을 보인다.

차량 롤 주행안정성 향상을 위한 RSC (Roll Stability Control) 성능 해석에 관한 연구 (A Study on the Performance Analysis of RSC (Roll Stability Control) for Driving Stability of Vehicles)

  • 권성진
    • 대한임베디드공학회논문지
    • /
    • 제17권5호
    • /
    • pp.257-263
    • /
    • 2022
  • Active stabilizers use signals such as steering angle, yaw rate, and lateral acceleration to vary the roll stiffness of the front and rear suspension depending on the vehicle's driving conditions, and are attracting attention as RSC (Roll Stability Control) system that suppresses roll when turning and improves ride comfort when going straight. Various studies have been conducted in relation to active stabilizer bars and RSC systems. However, accurate modeling of passive stabilizer model and active stabilizer model and vehicle dynamics analysis result verification are insufficient, and performance result analysis related to vehicle roll angle estimation and electric motor control is insufficient. Therefore, in this study, an accurate vehicle dynamics model was constructed by measuring the passive/active stabilizer bar model and component parameters. Based on this, the analysis result with high reliability was derived by comparing the roll angle estimation algorithm based on the lateral acceleration and suspension of the vehicle with the actual vehicle driving test result. In addition, it was intended to accurately analyze the motor torque characteristics and roll reduction effects of the electric motor-driven RSC system.