• Title/Summary/Keyword: Vehicle Wheel

Search Result 1,003, Processing Time 0.024 seconds

A study on Profile Measurement for Railway Wheels using High Speed Camera and Vision Technology (고속 하이비젼 카메라 기술을 이용한 철도차량 차륜형상 측정에 관한 연구)

  • Won, Si-Tae;Kwon, Seok-Jin;Huh, Sung-Bum
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • Maintenance and repair devices used for the inspection of the main parts of domestic railway vehicles have been imported from abroad. Especially, one of the representative domestic devices, the 'Wheel Profile Inspector System (WPIS)', was made by benchmarking foreign devices; this vehicle has been operated in the field. However, problems such as the reliability and performance of the WPIS in operation have appeared. In this study, in order to improve the precision and reliability of the WPIS for maintenance and inspection of railway vehicle wheels, the researchers improved the railway vehicle's WPIS by applying high-speed vision camera technology and an optimized image algorithm. The test results show that the reliability of the developed WPIS improved by approximately 10.4% compared to that of the conventional system.

Analysis of Influence on Derailment due to Primary Spring Aging (축상스프링 노화에 따른 탈선안전도 영향 분석)

  • Hur, Hyunmoo;Shin, Yujeong;You, Wonhee;Park, Joonhyuk
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.3
    • /
    • pp.320-328
    • /
    • 2017
  • In order to analyze the influence on derailment safety according to the aging of primary rubber springs widely applied to railway vehicles, characteristic tests were carried out on aged primary rubber spring samples. To analyze the effect of primary rubber spring aging on derailment safety, a vehicle dynamic analysis was carried out. The results of the vertical characteristics test for the rubber spring specimens with 17 years of service life revealed that the displacement restoration function was degraded due to rubber aging and the spring stiffness significantly increased. The results of the running dynamic analysis simulating the twist track running in accordance with the EN14363 standard, compared with the normal vehicle model (Case 1), showed that the derailment coefficient and the wheel unloading of the vehicle model (Case 2) using the aging primary spring characteristic increased, and the derailment safety was degraded. IN particular, it was found that the derailment safety due to the reduction of the wheel load is weak in the transient section where a steep slope change occurs.

A Study on Safety Estimation of Railroad Wheel (컨테이너 철도차륜의 안전성 평가에 관한 연구)

  • Lee, Dong-Woo;Kim, Jin-Nam;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1178-1185
    • /
    • 2010
  • Recently, high speed of container freight cars is causing fatigue damage of wheel. Sudden failure accidents cause a lot of physical and human damages. Therefore, damage analysis for wheel prevents failure accident of container freight car. Wheel receives mechanical and thermal loads at the same time while rolling stocks are run. The mechanical loads applied to wheel are classified by the horizontal load from contact of wheel and rail in curve line section and by the vertical force from rolling stocks weight. Also, braking and deceleration of rolling stocks cause repeated thermal load by wheel tread braking. Specially, braking of rolling stocks is frictional braking method that brake shoe is contacted in wheel tread by high breaking pressure. Frictional heat energy occurs on the contact surface between wheel tread and brake shoe. This braking converts kinetic energy of rolling stocks into heat energy by friction. This raises temperature rapidly and generates thermal loads in wheel and brake shoe. There mechanical and thermal loads generate crack and residual stress in wheel. Wetenkamp estimated temperature distribution of brake shoe experimentally. Donzella proposed fatigue life using thermal stress and residual stress. However, the load applied to wheel in aforementioned most researches considered thermal load and mechanical vertical load. Exact horizontal load is not considered as the load applied to wheel. Therefore, above-mentioned loading methods could not be applied to estimate actual stress applied to wheel. Therefore, this study proposed safety estimation on wheel of freight car using heat-structural coupled analysis on the basis of loading condition and stress intensity factor.

Empirical Modeling of Steering System for Autonomous Vehicles

  • Kim, Ju-Young;Min, Kyungdeuk;Kim, Young Chol
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.937-943
    • /
    • 2017
  • To design an automatic steering controller with high performance for autonomous vehicle, it is necessary to have a precise model of the lateral dynamics with respect to the steering command input. This paper presents an empirical modeling of the steering system for an autonomous vehicle. The steering system here is represented by three individual transfer function models: a steering wheel actuator model from the steering command input to the steering angle of the shaft, a dynamic model between the steering angle and the yaw rate of the vehicle, and a dynamic model between the steering command and the lateral deviation of vehicle. These models are identified using frequency response data. Experiments were performed using a real vehicle. It is shown that the resulting identified models have been well fitted to the experimental data.

A Study on the DYC 4WS Control Method for Improving the Dynamic Characteristics of Vehicle (자동차의 주행성능 향상을 위한 DYC 4WS 제어방법에 관한 연구)

  • 김형내;김석일;김동룡;김건상
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.1-11
    • /
    • 1998
  • The 4WS system is usually developed to improve the maneuverability at low speed and the straight line stability at high speed, but it is found to have the severe understeer characteristics at high speed. Therefore a 4WS vehicle requires to turn the steering wheel much more than a 2WS vehicle at high speeds even a driver goes through the same curved road. In this study, to enhance the cornering performance of the 4WS vehicle at high speed, a DYC 4WS system is proposed based on the nonlinear 4WS system and direct yaw moment control system. Especially the proposed DYC 4WS system is able to realize a zero side slip angle for vehicles and a cornering performance similar to the 2WS vehicle at high speed.

  • PDF

A Study on Development of Maintenance Skill Training Simulator for Railway Vehicle

  • Jung, NoGeon;Kim, BoSung;Lee, JaeBong;Lee, SangMoon;Koo, KyungWan;Kim, JaeMoon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.113-116
    • /
    • 2015
  • Generally, in the railway vehicle the driving force of gravity happens by the high-speed running and the repetitive impulse cause the degradation and the malfunction phenomenon shows differently because the durability of each component changes according to the internal and external causes. The maintenance of propulsion control device which is played the very important role as to the stable service of the railway vehicle is greatly important among them. Therefore maintenance training propulsion control device simulator is needed to maximize learning through repetition and improve the maintenance practical skills training. This paper designed the railway vehicle running device with a miniature for the railway vehicle maintenance training and developed a propulsion control device simulator equipped the imitation steering wheel.

A Study On a Lane Keeping Control in a Curved Road and Lane Changing Method to Avoid Collision of a Vehicle

  • Lee, seungchul;Kwangsuck Boo;Jeonghoon Song
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.107.2-107
    • /
    • 2002
  • The objective of this study is to propose a lane changing and keeping method on a curved road for an automatic guidance of a vehicle. It is well known that the speed control of a vehicle in a curved road is essential in terms of vehicle stability and passenger safety because centrifugal force makes a vehicle to be on out of lane. And it is also natural to avoid the collision with other cars or obstructions with keeping the stability and drivability. The vehicle pose and the road curvature were calculated by geometrically fusing sensor data from camera image, tachometer and steering wheel encoder though the Perception Net in which not only the state variables, but also the corresponding uncer...

  • PDF

Stability Analysis of Railway Vehicle Featuring MR Damper (MR 댐퍼를 적용한 철도차량의 안정성 해석)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Yoo, Won-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.957-962
    • /
    • 2008
  • This paper presents vibration control performances and stability evaluations of railway vehicle featuring controllable magnetorheological (MR) damper. The MR damper model is developed and then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid viscosity and MR effect. Design parameters are determined to achieve desired damping force level applicable to real railway vehicle. Subsequently, computer simulation of vibration control and stability analysis is performed using Matlab Simulink.

  • PDF

Linear Analysis of the Critical Speed for an Urban Railway Vehicle according to the Change of Suspension Characteristics (현가특성 변화에 따른 도시형 전동차의 임계속도 선형해석)

  • Park, Joon-Hyuk;Hur, Hyun-Moo;You, Won-Hee
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.251-257
    • /
    • 2007
  • This paper describes the variation of the critical speed of an urban railway vehicle according to the change of suspension characteristics. Suspensions of a railway vehicle are composed of primary and secondary suspensions. Generally, main focus of the stability analysis has been the primary suspension. However, secondary suspension has large effects on the stability as well as the ride quality of a vehicle. In this paper, stability of an urban railway vehicle is discussed in relation to the variation of characteristics of both primary and secondary suspension. For this, modal analysis is carried out using a linear dynamic model of a half vehicle and a polynomial fit for Kalker's creep coefficients. Stability along with change of the effective conicity of a wheel is also investigated.

  • PDF

Stability Analysis of Railway Vehicle Featuring MR Damper (MR댐퍼를 적용한 철도차량의 안정성 해석)

  • Ha, Sung-Hoon;Choi, Seung-Bok;You, Won-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.732-740
    • /
    • 2008
  • This paper presents vibration control performances and stability evaluations of railway vehicle featuring controllable magnetorheological(MR) damper. The MR damper model is developed and then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid viscosity and MR effect Design parameters are determined to achieve desired damping force level applicable to real railway vehicle. Subsequently, computer simulation of vibration control and stability analysis is performed using Matlab Simulink.