• 제목/요약/키워드: Vehicle Wheel

검색결과 1,003건 처리시간 0.026초

DEVELOPMENT OF VEHICLE DYNAMICS MODEL FOR REAL-TIME ELECTRONIC CONTROL UNIT EVALUATION SYSTEM USING KINEMATIC AND COMPLIANCE TEST DATA

  • KIM S. S.;JUNG H. K.;SHIM J. S.;KIM C. W.
    • International Journal of Automotive Technology
    • /
    • 제6권6호
    • /
    • pp.599-604
    • /
    • 2005
  • A functional suspension model is proposed as a kinematic describing function of the suspension, that represents the relative wheel displacement in polynomial form in terms of the vertical displacement of the wheel center and steering rack displacement. The relative velocity and acceleration of the wheel is represented in terms of first and second derivatives of the kinematic describing function. The system equations of motion for the full vehicle dynamic model are systematically derived by using velocity transformation method of multi-body dynamics. The comparison of test and simulation results demonstrates the validity of the proposed functional suspension modeling method. The model is computationally very efficient to achieve real-time simulation on TMS 320C6711 150 MHz DSP board of HILS (hardware-in-the-loop simulation) system for ECU (electronic control unit) evaluation of semi-active suspension.

윤하중 시험기를 이용한 프리캐스트 바닥판의 동적성능시험 (An Application of Wheel-Tracking-Machine on Dynamic Test of Precast Concrete Decks)

  • 성익현
    • 한국산학기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.644-650
    • /
    • 2010
  • 본 본 연구에서는 교량의 동적거동에 미치는 영향을 분석하기 위한 교량-차량거동을 파악 하고자 실험적 연구를 수행하였다. 이를 위하여 차량 교량 간 상호작용이 포함된 이동질량 형 윤하중 시험기를 조립식 프리캐스트 패널형식의 단순교량에 적용하여 이동질량 반복주행실험을 수행하였다. 실험분석 결과 차량-교량간 상호작용은 교량의 동적거동에 예측 가능한 거동뿐 아니라 상반거동 및 반전현상등의 추가적인 다양한 거동을 발생시킴을 알 수 있었다.

주행 시 궤도용 차량의 동적 거동에 관한 연구 (A Study on Dynamic Behavior of Tracked Vehicle under the Traveling Load)

  • 김종범;황영진;이석순;최창곤;손재홍
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.544-549
    • /
    • 2003
  • In this study, non-linear dynamic FE analysis of a tracked vehicle under the traveling load is performed by FE code ABAQUS. The stability of vehicle is examined using the structure analysis for the road wheel. The dynamic analysis is performed by traveling load. The traveling load include the 6 step loading spectrum about road wheel. The stress level around road wheel are 30 MPa ${\sim}$ 40 MPa. These value are indicated under modified fatigue strength 50.3 MPa. It takes about 3 second to be stable the structure after traveling load.

  • PDF

윤하중 실험기를 이용한 프리캐스트 바닥판의 이동질량실험 (An Application of Wheel-Tracking-Machine on Moving Mass Test of Precast Concrete Decks)

  • 성익현
    • 한국재난정보학회 논문집
    • /
    • 제7권3호
    • /
    • pp.198-205
    • /
    • 2011
  • 본 연구에서는 차량-교량 간 상호작용효과가 교량의 동적거동에 미치는 영향을 분석하기 위한 실험적 연구를 수행하였다. 이를 위하여 차량 교량 간 상호작용이 포함된 이동 질량 형 윤하중 시험기를 조립식 프리캐스트 패널형식의 단순교량에 적용하여 이동질량 반복주행실험을 수행하였다. 실험분석 결과 차량-교량 간 상호 작용은 교량의 동적거동에 예측 가능한 거동뿐 아니라 상반거동 및 반전현상 등의 추가적인 다양한 거동을 발생시킴을 알 수 있었다.

모델 예측 제어 기법을 이용한 토크벡터링과 후륜조향 통합 제어 (Integrated Control of Torque Vectoring and Rear Wheel Steering Using Model Predictive Control)

  • 차현수;김자유;이경수
    • 자동차안전학회지
    • /
    • 제14권4호
    • /
    • pp.53-59
    • /
    • 2022
  • This paper describes an integrated control of torque vectoring and rear wheel steering using model predictive control. The control objective is to minimize the yaw rate and body side slip angle errors with chattering alleviation. The proposed model predictive controller is devised using a linear parameter-varying (LPV) vehicle model with real time estimation of the varying model parameters. The proposed controller has been investigated via computer simulations. In the simulation results, the performance of the proposed controller has been compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the lateral stability and handling performance.

비선형 관측기를 이용한 사륜조향 차량의 횡방향 안정성 강화를 위한 강인 제어기 설계 (Design of a Robust Controller to Enhance Lateral Stability of a Four Wheel Steer Vehicle with a Nonlinear Observer)

  • 송정훈
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.120-127
    • /
    • 2007
  • This paper describes the development of a nonlinear observer for four wheel steer (4WS) vehicle. An observer is designed to estimate the vehicle variables difficult to measure directly. A brake yaw motion controller (BYMC), which uses a PID control method, is also proposed for controlling the brake pressure of the rear and inner wheels to enhance lateral stability. It induces the yaw rate to track the reference yaw rate, and it reduces a slip angle on a slippery road. The braking and steering performances of the anti-lock brake system (ABS) and BYMC are evaluated for various driving conditions, including straight, J-turn, and sinusoidal maneuvers. The simulation results show that developed ABS reduces the stopping distance and increases the longitudinal stability. The observer estimates velocity, slip angle, and yaw rate of 4WS vehicle very well. The results also reveal that the BYMC improves vehicle lateral stability and controllability when various steering inputs are applied.

전차륜 조향 장치를 장착한 굴절궤도 차량의 주행특성에 관한 연구 (A Study on Dynamic Characteristic for the Bi-modal Tram with All-Wheel-Steering System)

  • 이수호;문경호;전용호;박태원;이정식;김덕기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.99-108
    • /
    • 2007
  • The bi-modal tram guided by the magnetic guidance system has two car-bodies and three axles. Each axle of the vehicle has an independent suspension to lower the floor of the car and improve ride quality. The turning radius of the vehicle may increase as a consequence of the long wheel base. Therefore, the vehicle is equipped with the All-Wheel-Steering(AWS) system for safe driving on a curved road. Front and rear axles should be steered in opposite directions, which means a negative mode, to minimize the turning radius. On the other hand, they also should be steered in the same direction, which means a positive mode, for the stopping mode. Moreover, only the front axle is steered for stability of the vehicle upon high-speed driving. In summary, steering angles and directions of the each axle should be changed according to the driving environment and steering mode. This paper proposes an appropriate AWS control algorithm for stable driving of the bi-modal tram. Furthermore, a multi-body model of the vehicle is simulated to verify the suitability of the algorithm. This model can also analyze the different dynamic characteristics between 2WS and AWS.

  • PDF

3호선 실제선로 조건에서의 레일경좌 변화에 따른 철도차량 주행안전성 해석 (Running Safety Analysis of Railway Vehicle depending on Rail Inclination Change on Actual Track of Subway Line No.3 in Seoul)

  • 김태건;이희성
    • 한국안전학회지
    • /
    • 제31권3호
    • /
    • pp.130-135
    • /
    • 2016
  • It is very hard to analyze the train derailment safety quantitatively at the curved section because of the diversified affect parameters including the complex interaction between wheel and rail, the train conditions such as the shape of wheel, suspension system, the track conditions such as the radius of curve, cant, transition curve, and the operation conditions, etc. Two major factors related to the running safety of railway vehicle are classified as the railway vehicle and the track condition. In this study, when the railway vehicle passing through curves of actual track condition of subway line NO.3 in seoul ($Yeonsinnae{\leftrightarrow}Gupabal$), the effect that has influence on running safety depending on rail inclination. The analysis result of 1/40 rail inclination condition is more favorable on running safety than other rail inclination conditions because derailment coefficient and wheel unloading ratio are the lowest.

노면 요철을 고려한 AGT 차량의 동적 응답 해석 (Dynamic Response Analysis of AGT Vehicle Considering Surface Roughness of Railway)

  • 송재필;김철우;김기봉
    • 한국소음진동공학회논문집
    • /
    • 제12권12호
    • /
    • pp.986-993
    • /
    • 2002
  • The equations of motion for an automated guide-way transit(AGT) system running on a path with roughness have been derived to investigate dynamic responses and wheel loads of moving vehicles of the AGT system. A vehicle of the AGT system is idealized as three-dimensional model with 11 degree-of-freedom. The computer program is developed to solve the dynamic equations, and anlatical results are verified by comparing the results with experimental oness. Parametric studies are carried out to investigate the dynamic responses of an AGT vehicle according to vehicle speeds, surface roughness, damping and stiffness of suspension systems. The parametric study demonstrates that amplitudes of dynamic responses and the wheel loads have a tendency to increase according to travel speeds, the stiffness of suspension system and surface roughness. On the other hand. those amplitudes tend to decrease according to increase of damping of the suspension system.

MR 댐퍼를 적용한 철도차량 현가장치의 설계 및 제어 (Design and Control of Railway Vehicle Suspension System Featured by MR Damper)

  • 하성훈;최승복;이규섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 추계학술대회 논문집
    • /
    • pp.71-76
    • /
    • 2010
  • This paper presents the feasibility for improving the ride quality of railway vehicle equipped with semi-active suspension system using magnetorheological(MR) fluid damper. In order to achieve this goal, a fifteen degree of freedom of railway vehicle model, which includes a car body, bogie frame and wheel-set is proposed to represent lateral, yaw and roll motions. The MR damper system is incorporated with the governing equation of motion of the railway vehicle which includes secondary suspension. To illustrate the effectiveness of the controlled MR dampers on railway vehicle secondary suspension system, the sky-hook control law using the velocity feedback is adopted. Computer simulation for performance evaluation is performed using Matlab. Various control performances are demonstrated under external excitation which is the creep force between wheel and rail.

  • PDF