• Title/Summary/Keyword: Vehicle Wheel

Search Result 1,003, Processing Time 0.023 seconds

A Study on the Optimum Velocity of a Four Wheel Steering Autonomous Robot (4륜조향 자율주행로봇의 최적속도에 관한 연구)

  • Kim, Mi-Ok;Lee, Jung-Han;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.86-92
    • /
    • 2009
  • A driver-vehicle model means the integrated dynamic model that is able to estimate the steering wheel angle from the driver's desired path based on the dynamic characteristics of the driver and vehicle. Autonomous driving robot for factory automation has individual four-wheels which are driven by electronic motors. In this paper, the dynamic characteristics of several four-wheel steering systems with the simultaneously steerable front and rear wheels are investigated and compared by means of the driver-vehicle model. A diver-vehicle model is proposed by using the PID control to velocity and trajectory of control autonomous driving robot. To determine the optimum speed of a autonomous driving robot, steady-state circle simulation is carried out with the ADAMS program and MATLAB control model.

Contact Fatigue Analysis of White Etching Layer according to Thickness Variation (White etching layer의 두께변화에 따른 접촉피로수명 평가)

  • Seo, Jung-Won;Kwon, Seok-Jin;Jun, Hyun-Ku;Lee, Dong-Hyong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.8
    • /
    • pp.35-41
    • /
    • 2010
  • White Etching Layer(WEL) is a phenomenon that occurs on the surface of rail due to wheel/rail interactions such as excessive braking and acceleration. Rolling Contact Fatigue(RCF) cracks on the surface of rail have been found to be associated with WEL. In this study, we have investigated RCF damages of white etching layer using twin disc testing and fatigue analysis. These tests consist of wheel flat tests and rolling contact fatigue tests. WEL has been simulated by wheel flat test. It has been founded that the WEL with a bright featureless contrast is formed on the surface of specimen by etching. Rolling contact fatigue test was conducted by using flat specimens with the WEL generated by the wheel flat test. It has been observed that two types of cracks occur within the specimen. The contact fatigue test was simulated in 2D elastic-plastic FE simulations. Based on loading cycles obtained from the finite element analysis, the fatigue life analysis according to the thickness variation of WEL was carried out. The longest fatigue life was observed from the thickness of 20um.

Evaluation of Running Safety for Depressed Center Flat Car of 3-axle Bogie (3-축 대차 곡형평판차량의 주행안전성 평가)

  • Ham, Young-Sam;Seo, Jung-Won;Kwon, Seok-Jin;Lee, Dong-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.559-564
    • /
    • 2011
  • For the safety of railway, it should be evaluated for the running safety by measuring the derailment coefficient. Although railway has run the fixed and maintained rail, some of railway is derailed. This report shows the results that performed the static load test, main line running test on the basis of the derailment theory and experience. It is executed main line test into more than 90km/h for estimating the curving performance and running safety of depressed center flat car of 3-axle bogie. As the test results, could confirm the curving performance and running safety of depressed center fiat car of 3-axle bogie from the results of the wheel unloading, lateral force, derailment coefficient etc. Derailment coefficient was less than 0.6, and lateral force allowance limit and wheel load reduction ratio were enough safe.

Influence of the Speeds on the Curve Squeal Noise of Railway Vehicles (철도차량의 곡선부 스킬 소음에 대한 속도의 영향)

  • Lee, Chan-Woo;Kim, Jae-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.572-577
    • /
    • 2011
  • Curve squealing of inter-city railway vehicle is a noise with high acoustic pressure and rather narrow frequency spectra. This noise turns out to be very annoying for the people living in the neighborhood of locations and the passenger in railway vehicle where this phenomenon occurs. Squealing is caused by a self-exited stick-slip oscillation in the wheel-rail contact. Curve squeal noise of railway vehicles that passed by a factor of the speed limit, so to overcome in order to improve running performance is one of the largest technology. In the present paper, characteristic of squeal noise behavior at the Hanvit-200 tilting train test-site. Curve squealing of railway wheels/rail contact occurs in R400~ R800 curves with a frequency range of about 4~11 kHz. If the curve is less than the radius of wheel frail contact due to |left-right| noise level difference (dBA) shows a significant effect of squeal noise were more likely.

A Study on the Pivot Steering Control of an In-Wheel Drive Vehicle with Trailing Arm Suspensions (인휠 구동 트레일링 암 형식 차량의 제자리 회전 조향 제어 연구)

  • Kim, Chi-Ung;Lee, Kyoung-Hoon;Woo, Kwan-Je
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.745-752
    • /
    • 2012
  • The pivot steering of an individual wheel motor drive vehicle is an effective steering maneuver in the narrow road, but it has become a matter of concern that the torque input of each wheel is very difficult to determine. In this study, the independent yaw moment control was proposed for the smooth pivot steering control of an in-wheel drive vehicle. For this control method, the vertical forces of tires were estimated from the trailing arm dynamic model, and the yaw moments of individual wheels were calculated from the vehicle dynamic model. Dynamic simulation results showed that the independent yaw moment control was much more effective on the minimization of the instabilities of pivot steering in comparison with the conventional direct yaw moment control with yaw rate feedback.

A Study on the Enhancement of the Cooling Structure for In-wheel Motor (인휠 모터의 냉각 구조 개선에 관한 연구)

  • Kim, Dae Geon;Kim, Sung Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.36-42
    • /
    • 2013
  • Recently, the automobile of the future will be able to substitute an electric vehicle for an internal combustion engine, so the following research is actively in the process of advancing. A traction motor is one of the core parts which compose the electric vehicle. Especially, it is difficult to connect cooling water piping to an in-wheel motor because the in-wheel motor is located within the wheel structure. This structure has disadvantage for closed type and air cooling, so the cooling design of motor housing and internal in-wheel motor is important. In this study, thermo-flow analysis of the in-wheel motor for vehicles was performed in consideration of ram air effect. In order to improve cooling efficiency of the motor, we variously changed geometries of housing and internal shape. As a result, we found that the cooling efficiency was most excellent, in case the cooling groove direction was same with air flow direction and arranged densely. Furthermore, we investigated the cooling performance enhancement with respect to variable geometries of internal in-wheel motor.

A Study on Efficient Vehicle Classification based on 3-Piezo Sensor AVC SYSTEM (3-Piezo 센서 기반 교통량 조사시스템의 차종분류방식에 대한 연구)

  • Cho, Sung-Yun;Lee, Dong-Gyu;Ruy, Seung-Ki
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.25-31
    • /
    • 2013
  • The AVC System which has operated in Highways has two-piezo sensors. In this system the piezo sensors are installed on parally each other this configuration has a defect about diversion driving and sensor damage. In this reserch, 3-Sensor AVC algorithm has been proposed which is supported enhance accuracy of the vehicle classification rate compare with usual 2-Sensor systems. This algorithm is allowed to calculate wheel tread, wheel width. The third inclinded piezo sensor can detec twheel tread, wheel width using signal processing. 3-Sensor AVC has been installed in real highway and the outcome performance has been proof.

THE MECHATRONIC VEHICLE CORNER OF DARMSTADT UNIVERSITY OF TECHNOLOGY-INTERACTION AND COOPERATION Of A SENSOR TIRE, NEW LOW-ENERGY DISC BRAKE AND SMART WHEEL SUSPENSION

  • Bert Breuer;Michael Barz;Karlheinz Bill;Steffen Gruber;Martin Semsch;Thomas Strothjohann;Chungyang Xie
    • International Journal of Automotive Technology
    • /
    • v.3 no.2
    • /
    • pp.63-70
    • /
    • 2002
  • Future on-board vehicle control systems can be further improved through new types of mechatronic systems. In particular, these systems' capacities for interaction enhance safety, comfort and economic viability. The Automotive Engineering Department (fzd) of darmstadt University of Technology is engaged in research of the mechatronic vehicle corner, which consists of three subsystems: sensor tire, electrically actuated wheel brake and smart suspension. By intercommunication of these three systems, the brake controller receives direct, fast and permanent information about dynamic events in the tire contact area provided by the tire sensor as valuable control input. This allows to control operation conditions of each wheel brake. The information provided by the tire sensor for example help to distinguish between staightline driving and cornering as well as to determine $\mu$-split conditions. In conjunction with current information of dynamic wheel loads, tire pressures and friction tyre/road, the ideal brake force distribution can be achieved. Alike through integration of adaptive suspension bushings, elastokinematic behaviour and wheel positions can be adapted to manoeuver-oriented requirements.

A Study on Controller Design to Improve the Driving Performance of the Four Wheel Steering Vehicle (4륜 조향 차량의 주행성능 개선을 위한 제어기 설계에 관한 연구)

  • Sohn, Ju-Han;Choi, Sung-Uk;Lee, Young-Jin;Lee, Jin-Woo;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2569-2571
    • /
    • 2000
  • In the vehicle steering system, we can consider two methods to steer the vehicle. One is a front wheel steering(FWS), the other is a four wheel steering(4WS). The four wheel steering method has been recently introduced to improve the steering performance. In this paper, we present a design of the four wheel steering controller. First, we constructed the neural network two degree of freedom PID controller to control the 4WS system. Then we compared the performance of conventional PID controller with our proposed controller in terms of yaw rate and side slip velocity. The computer simulation results show that 4WS system controlled by the proposed controller has well driving performances than the other.

  • PDF

Evaluation and Analysis of Wheel alignment Effecting on Tire Uneven Wear (휠 얼라이먼트 값과 타이어 편마모 영향도 평가 및 분석)

  • Chung, Soo-Sik;Jung, Won-Wook;Lee, Sang-Ju;Koh, Bum-Jin;Choi, Young-Sam
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1658-1662
    • /
    • 2007
  • The tire uneven wear has been an ongoing concern for a long time, and one of customer's complaints too. This paper deals with uneven wear improvement of passenger car tires, to have tested the tire wear levels by each wheel alignment set (according to changing toe and camber) using taxis. The pre-set wheel alignments on test vehicle were gained by energy friction simulation of tire. The result of this experiment was as follows : First, verified the effects of initial wheel alignment (adjusted at Curb Vehicle Weight) to minimize tire uneven wear. Second, tire uneven wear makes tire life much shorter than even wear does.

  • PDF