• Title/Summary/Keyword: Vehicle Types

Search Result 1,053, Processing Time 0.033 seconds

Passenger Car Equivalents of Various Vehicle Types on Expressway Work Zones (고속도로 공사구간에서의 차종별 승용차환산계수)

  • 강승규
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.3
    • /
    • pp.61-73
    • /
    • 1996
  • The objective of this paper is to estimate the PCE(Passenger Car Equivalents) of various vehicle types on expressway work zones. Headway samples of 5,359 vehicles were collected in 6 work zones in the Kyungbu Expressway between September and November of 1995. Average headways of 8 vehicle types based on the vehicle classification method of the Department of Construction and Transportation were calculated. A statistical test of effects of the types of the preceding vehicles were performed for the average headways between a vehicle type preceded by other vehicle types. The results show that the effects of the type of preceding vehicles are significant (exceeded 5% and 10% significance levels) and the PCEs of heavy vehicles on expressway work zones are higher than that of basic expressway section. Therefore, different adjustment factors should be applied for heavy vehicles in estimating saturation flow rates of expressway work zones. The study also derives an equation to determine PCEs of these vehicle types.

  • PDF

Vehicle Type Classification Method for Road Traffic Surveys (도로교통량 조사를 위한 12종 차종 분류 방법)

  • Mi-Seon Kang;Chan-Ho Kim;Pyong-Kun Kim
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.5
    • /
    • pp.227-234
    • /
    • 2024
  • This paper proposes a novel method for effectively classifying 12 vehicle types required for road traffic surveys by utilizing deep learning techniques. In particular, it focuses on the trailer vehicle types, classified as types 8 to 12, which have been challenging in previous research due to data scarcity. A zero-shot learning approach, Grounding DINO, is employed to extract key features that can distinguish these trailer types, addressing the data imbalance issue. This method enables accurate classification of the underrepresented vehicle types, leading to efficient classification across all 12 types. To the best of the authors' knowledge, this is the first attempt to classify 12 vehicle types required for road traffic surveys using publicly available video data.

A Study on Establishment of Discrimination Model of Big Traffic Accident (대형교통사고 판별모델 구축에 관한 연구)

  • 고상선;이원규;배기목;노유진
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.101-112
    • /
    • 1999
  • Traffic accidents increase with the increase of the vehicles in operation on the street. Especially big traffic accidents composed of over 3 killed or 20 injured accidents with the property damage become one of the serious problems to be solved in most of the cities. The purpose of this study is to build the discrimination model on big traffic accidents using the Quantification II theory for establishing the countermeasures to reduce the big traffic accidents. The results are summarized as follows. 1)The existing traffic accident related model could not explain the phenomena of the current traffic accident appropriately. 2) Based on the big traffic accident types vehicle-vehicle, vehicle-alone, vehicle-pedestrian and vehicle-train accident rates 73%, 20.5% 5.6% and two cases respectively. Based on the law violation types safety driving non-fulfillment center line invasion excess speed and signal disobedience were 48.8%, 38.1% 2.8% and 2.8% respectively. 3) Based on the law violation types major factors in big traffic accidents were road and environment, human, and vehicle in order. Those factors were vehicle, road and environment, and human in order based on types of injured driver’s death. 4) Based on the law violation types total hitting and correlation rates of the model were 53.57% and 0.97853. Based on the types of injured driver’s death total hitting and correlation rates of the model were also 71.4% and 0.59583.

  • PDF

A Real-world Accident Study on Vehicle Damage Types and Occupant Injury (자동차사고 손상유형과 상해에 관한 실사고 연구)

  • Hong, Seungjun;Park, Wonpil;Ha, Sungyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.107-112
    • /
    • 2013
  • Base on insurance vehicle collision and bodily injury claim reports, 23,655 cases of vehicle to vehicle accidents occurred in Korea 2010 are investigated in order to understand vehicle damage severities, repair costs and occupant injury types. The results of our statistical analysis reveal that minor damages with small dent or scratches on vehicle body panels which is assumed to imply during very low speed crashes are major portion of accident severities types. The most vulnerable body regions due to the real-world accident are neck. The 86.3% of total injured driver in minor rear damaged vehicles has reported neck pains and they are followed by whole bodies and head but with much lower occurrence rates.

Lower Tail Light Learning-based Forward Vehicle Detection System Irrelevant to the Vehicle Types (후미등 하단 학습기반의 차종에 무관한 전방 차량 검출 시스템)

  • Ki, Minsong;Kwak, Sooyeong;Byun, Hyeran
    • Journal of Broadcast Engineering
    • /
    • v.21 no.4
    • /
    • pp.609-620
    • /
    • 2016
  • Recently, there are active studies on a forward collision warning system to prevent the accidents and improve convenience of drivers. For collision evasion, the vehicle detection system is required. In general, existing learning-based vehicle detection methods use the entire appearance of the vehicles from rear-view images, so that each vehicle types should be learned separately since they have distinct rear-view appearance regarding the types. To overcome such shortcoming, we learn Haar-like features from the lower part of the vehicles which contain tail lights to detect vehicles leveraging the fact that the lower part is consistent regardless of vehicle types. As a verification procedure, we detect tail lights to distinguish actual vehicles and non-vehicles. If candidates are too small to detect the tail lights, we use HOG(Histogram Of Gradient) feature and SVM(Support Vector Machine) classifier to reduce false alarms. The proposed forward vehicle detection method shows accuracy of 95% even in the complicated images with many buildings by the road, regardless of vehicle types.

CRASHWORTHINESS IMPROVEMENT OF VEHICLE-TO-RIGID FIXED BARRIER IN FULL FRONTAL IMPACT USING NOVEL VEHICLE'S FRONT-END STRUCTURES

  • ELMARAKBI A. M.;ZU J. W.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.491-499
    • /
    • 2005
  • There are different types of vehicle impacts recorded every year, resulting in many injuries and fatalities. The severity of these impacts depends on the aggressivety and incompatibility of vehicle-to-roadside hardware impacts. The aim of this paper is to investigate and to enhance crashworthiness in the case of full barrier impact using a new idea of crash improvement. Two different types of smart structures have been proposed to support the function of the existing vehicle. The work carried out in this paper includes developing and analyzing mathematical models of vehicle-to-barrier impact for the two types of smart structures. It is proven from analytical analysis that the mathematical models can be used in an effective way to give a quick insight of real life crashes. Moreover, it is shown that these models are valid and flexible, and can be useful in optimization studies.

Estimation of Optimal Passenger Car Equivalents of TCS Vehicle Types for Expressway Travel Demand Models Using a Genetic Algorithm (고속도로 교통수요모형 구축을 위한 유전자 알고리즘 기반 TCS 차종별 최적 승용차환산계수 산정)

  • Kim, Kyung Hyun;Yoon, Jung Eun;Park, Jaebeom;Nam, Seung Tae;Ryu, Jong Deug;Yun, Ilsoo
    • International Journal of Highway Engineering
    • /
    • v.17 no.3
    • /
    • pp.97-105
    • /
    • 2015
  • PURPOSES : The Toll Collection System (TCS) operated by the Korea Expressway Corporation provides accurate traffic counts between tollgates within the expressway network under the closed-type toll collection system. However, although origin-destination (OD) matrices for a travel demand model can be constructed using these traffic counts, these matrices cannot be directly applied because it is technically difficult to determine appropriate passenger car equivalent (PCE) values for the vehicle types used in TCS. Therefore, this study was initiated to systematically determine the appropriate PCE values of TCS vehicle types for the travel demand model. METHODS : To search for the appropriate PCE values of TCS vehicle types, a traffic demand model based on TCS-based OD matrices and the expressway network was developed. Using the traffic demand model and a genetic algorithm, the appropriate PCE values were optimized through an approach that minimizes errors between actual link counts and estimated link volumes. RESULTS : As a result of the optimization, the optimal PCE values of TCS vehicle types 1 and 5 were determined to be 1 and 3.7, respectively. Those of TCS vehicle types 2 through 4 are found in the manual for the preliminary feasibility study. CONCLUSIONS : Based on the given vehicle delay functions and network properties (i.e., speeds and capacities), the travel demand model with the optimized PCE values produced a MAPE value of 37.7%, RMSE value of 17124.14, and correlation coefficient of 0.9506. Conclusively, the optimized PCE values were revealed to produce estimates of expressway link volumes sufficiently close to actual link counts.

Evaluation of a Traffic Noise Predictive Model for an Active Noise Cancellation (ANC) System (능동형 소음저감 기법을 위한 도로교통소음 예측 모형 평가 연구)

  • An, Deok Soon;Mun, Sung Ho;An, Oh Seong;Kim, Do Wan
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.11-18
    • /
    • 2015
  • PURPOSES : The purpose of this thesis is to evaluate the effectiveness of an active noise cancellation (ANC) system in reducing the traffic noise level against frequencies from the predictive model developed by previous research. The predictive model is based on ISO 9613-2 standards using the Noble close proximity (NCPX) method and the pass-by method. This means that the use of these standards is a powerful tool for analyzing the traffic noise level because of the strengths of these methods. Traffic noise analysis was performed based on digital signal processing (DSP) for detecting traffic noise with the pass-by method at the test site. METHODS : There are several analysis methods, which are generally divided into three different types, available to evaluate traffic noise predictive models. The first method uses the classification standard of 12 vehicle types. The second method is based on a standard of four vehicle types. The third method is founded on 5 types of vehicles, which are different from the types used by the second method. This means that the second method not only consolidates 12 vehicle types into only four types, but also that the results of the noise analysis of the total traffic volume are reflected in a comparison analysis of the three types of methods. The constant percent bandwidth (CPB) analysis was used to identify the properties of different frequencies in the frequency analysis. A-weighting was applied to the DSP and to the transformation process from analog to digital signal. The root mean squared error (RMSE) was applied to compare and evaluate the predictive model results of the three analysis methods. RESULTS : The result derived from the third method, based on the classification standard of 5 vehicle types, shows the smallest values of RMSE and max and min error. However, it does not have the reduction properties of a predictive model. To evaluate the predictive model of an ANC system, a reduction analysis of the total sound pressure level (TSPL), dB(A), was conducted. As a result, the analysis based on the third method has the smallest value of RMSE and max error. The effect of traffic noise reduction was the greatest value of the types of analysis in this research. CONCLUSIONS : From the results of the error analysis, the application method for categorizing vehicle types related to the 12-vehicle classification based on previous research is appropriate to the ANC system. However, the performance of a predictive model on an ANC system is up to a value of traffic noise reduction. By the same token, the most appropriate method that influences the maximum reduction effect is found in the third method of traffic analysis. This method has a value of traffic noise reduction of 31.28 dB(A). In conclusion, research for detecting the friction noise between a tire and the road surface for the 12 vehicle types needs to be conducted to authentically demonstrate an ANC system in the Republic of Korea.

An In-depth Analysis of Head-on Collision Accidents for Frontal Crash Tests of Automated Driving Vehicles (자율주행자동차 정면충돌평가방안 마련을 위한 국내 정면충돌사고 심층분석 연구)

  • Yohan Park;Wonpil Park;Seungki Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.4
    • /
    • pp.88-94
    • /
    • 2023
  • The seating postures of passengers in the automated driving vehicle are possible in atypical forms such as rear-facing and lying down. It is necessary to improve devices such as airbags and seat belts to protect occupants from injury in accidents of the automated driving vehicle, and collision safety evaluation tests must be newly developed. The purpose of this study is to define representative types of head-on collision accidents to develop collision standards for autonomous vehicles that take into account changes in driving behavior and occupants' postures. 150 frontal collision cases remained by filtering (accident videos, images, AIS 2+, passenger car, etc…) and random sampling from approximately 320,000 accidents claimed by a major insurance company over the past 5 years. The most frequent accident type is a head-on collision between a vehicle going straight and a vehicle turning left from the opposite side, accounting for 54.7% of all accidents, and most of these accidents occur in permissive left turns. The next most common frontal collision is the center-lane violation by drowsy driving and careless driving, accounting for 21.3% of the total. For the two types above, data such as vehicle speed, contact point/area, and PDOF at the moment of impact are obtained through accident reconstruction using PC-Crash. As a result, two types of autonomous vehicle crash safety test scenarios are proposed: (1) a frontal oblique collision test based on the accident types between a straight vehicle and a left-turning vehicle, and (2) a small overlap collision test based on the head-on accidents of center-lane violation.

Design of Lateral Controller for Automatic Valet Parking and Its Performance Analysis with Respect to Vehicle Types (자동 발렛 파킹을 위한 횡방향 제어기 설계 및 차종변화에 대한 제어 성능 분석)

  • Choi, Heejae;Song, Bongsob
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.1051-1058
    • /
    • 2012
  • The unified lateral control algorithm for automatic valet parking for various types of vehicles is presented and its feasibility is shown experimentally via field tests for the given parking scenario. First, a trajectory generation algorithm for forward driving and backward multi-step parking maneuvers is developed. Then, with consideration of different types of vehicles and operating conditions, a kinematic vehicle model is used and validated using field test data. Using the nonlinear vehicle model, the lateral controller is designed based on dynamic surface control. Finally the proposed lateral control law is validated via hardware-in-the-loop simulations for different types of vehicles and experimentally using a test vehicle through field tests.