• Title/Summary/Keyword: Vehicle Tire

Search Result 391, Processing Time 0.024 seconds

Development of Tire Vertical Force Estimation Algorithm in Real-time using Tire Inner Surface Deformation (타이어 내부 표면 변형량을 이용한 타이어 수직하중 실시간 추정 알고리즘 개발)

  • Lee, Jaehoon;Kim, Jin-Oh;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.142-147
    • /
    • 2013
  • Over the past few years, intelligent tire is developed very actively for more accurate measurement of real-time tire forces generated during vehicle driving situation. Information on the force of intelligent tire could be used very usefully to chassis control systems of a vehicle. Intelligent tire is based on deformation of tire's inner surface from the waveform of a SAW, or Surface Acoustic Wave. The tire vertical force is estimated by using variance analysis of sensor signals. The estimated tire vertical force is compared with the tire vertical force generated during vehicle driving situation in real-time environment. The scope of this paper is a correlation study between the measured sensor signals and the tire vertical force generated during vehicle driving situation.

Ride Comfort Investigation of 1/4 MR Damper Vehicle under Different Tire Pressure (타이어 압력 변화에 따른 1/4 MR 댐퍼 차량의 승차감 고찰)

  • Maeng, Young-Jun;Seong, Min-Sang;Choi, Seung-Bok;Kwon, Oh-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.12
    • /
    • pp.1159-1165
    • /
    • 2011
  • This paper presents ride comfort characteristics of a quarter-vehicle magneto-rheological(MR) suspension system with respect to different tire pressure. As a first step, controllable MR damper is designed and modeled based on both the optimized damping force levels and mechanical dimensions required for a commercial full-size passenger vehicle. Then, a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the MR damper is constructed. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of the quarter-vehicle MR suspension system. Finally, the ride comfort analysis with respect to different tire pressure is undertaken in time domain. In addition, a comparative result between controlled and uncontrolled is provided by presenting vertical RMS displacement.

Study on Interior Noise Transfer Path Analysis by Tire Cavity Resonance (타이어 공동의 공명에 의한 차량 실내음 전달경로 연구)

  • Lee, Sang-Ju;Kang, Byun-Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11b
    • /
    • pp.129-133
    • /
    • 2005
  • Vibration transmitted through rolling tire is a major source of road noise in vehicle interior noise on the range of low frequency.($0{\sim}500Hz$) Among various road noises, tire cavity noise has very peak on $200{\sim}250Hz$. And generally it is generated by cavity resonance of tire. In this paper, tire cut-sample is used to calculate the tire cavity frequency. Cavity resonance frequency of tire is measured through vertical/tangential forces at load cell of axle using drum cleat impact. This method is useful to find cavity peak because measured forces do not have complex peaks. And changing the test conditions (air inflation, loads), tire cavity resonance characteristics are identified. Finally, vehicle interior noise is measured as tire/vehicle are changing. As difference of tire vertical force is bigger, interior noise level is higher at cavity frequency. Also we can assume that vehicle sensitivity is important factor at tire cavity noise.

  • PDF

Performance Analysis with Different Tire Pressure of Quarter-vehicle System Featuring MR Damper (MR 댐퍼를 장착한 1/4차량의 타이어 공기압에 따른 성능분석)

  • Sung, Kum-Gil;Lee, Ho-Guen;Choi, Seung-Bok;Park, Min-Kyu;Park, Myung-Kyu
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.249-256
    • /
    • 2010
  • This paper presents performance analysis of a quarter-vehicle magneto-rheological(MR) suspension system with respect to different tire pressure. As a first step, MR damper is designed and manufactured based on the optimized damping force levels and mechanical dimensions required for a commercial mid-sized passenger vehicle. After experimentally evaluating dynamic characteristics of the manufactured MR damper, the quarter-vehicle MR suspension system consisting of sprung mass, spring, tire and the MR damper is constructed in order to investigate the ride comfort. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of quarter-vehicle MR suspension system. Ride comfort characteristics such as vertical acceleration RMS and weighted RMS of sprung mass are evaluated under various road conditions.

The Evaluation of the Road Noise of the Automotive Tire by Subjective Test (주관적인 시험에 의한 자동차 타이어 도로소음 평가)

  • Lee, Tae-Keun;Kim, Byoung-Sam;Cho, Tae-Jea
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.91-96
    • /
    • 2008
  • As a remarkable reduction of the vehicle noise, the important of tire noise which is generated from the vehicle and the necessity of the research for the noise reduction is being emphasized. In this study, the road noise which is excited by the interaction between tire and road has been studied. The subjective test(feeling test) according to SAE J1060 rating scale is applied to the evaluation of the road noise. The combination of the several tires and vehicles are made to consider the effect of the vehicle suspension and the tire structure for road noise. The vehicles with 3-different suspension system are applied to road noise test and the eight kinds of tires are selected. As the results, the effects of the vehicle suspension and tire structure which affects on road noise are investigated.

Estimation of Tire-Road Friction Coefficient using Observers (관측기를 이용한 노면과 타이어 간의 마찰계수 추정)

  • 정태영;이경수;송철기
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.6
    • /
    • pp.722-728
    • /
    • 1998
  • In this paper real-time estimation methods for identifying the tire-road friction coefficient are presented. Taking advantage of the Magic Formula Tire Model, the similarity technique and the specific model for the vehicle dynamics, a reduced order observer/filtered-regressor-based method is proposed. The Proposed method is evaluated on simulations of a full-vehicle model with an eight state nonlinear vehicle/transmission model and nonlinear suspension model. It has been shown through simulations that it is possible to estimate the tire-road friction from measurements of engine rpm, transmission output speed and wheel speeds using the proposed identification method. The proposed method can be used as a useful option as a part of vehicle collision warning/avoidance systems and will be useful in the implementation of a warning algorithm since the tire-road friction can be estimated only using RPM sensors.

  • PDF

Evaluation of Tire Lateral Hydroplaning using Measured Vehicle Acceleration (가속도 계측을 이용한 타이어 선회 수막현상의 평가)

  • Kang, Young Kyu;Hwang, JangSoon;Oh, YagJeon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.623-625
    • /
    • 2013
  • Tire hydroplaning is one of the most important tire performances, especially for safety on wet road surface. And nowadays various methods such as FEM and FVM analysis are being applied to design and improve tire hydroplaning performance, along with on-vehicle test of tire hydroplaning. Conventional evaluation of tire hydroplaning has been done by comparing peak lateral acceleration and vehicle speed in time domain. But in this paper, frequency domain analysis of lateral acceleration when hydroplaning at high speed has been carried out to get the quantitative comparison between test tires. And it is concluded that the frequency spectrum analysis of lateral acceleration gives much better discrimination, as compared to the conventional time domain analysis of lateral acceleration and vehicle speed.

  • PDF

Development of Finite Element Tire Model for Vehicle Dynamics Analysis (차량동역학 해석용 타이어 유한요소 모델 개발)

  • Jung, Sung Pil;Lee, Tae Hee;Kim, Gi Whan;Yun, So Joong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.858-861
    • /
    • 2014
  • This paper presents a simplified finite element tire model for vehicle dynamics analysis. The classical finite element tire model was too big to simulate dynamic properties of the tire. In the simplified model, number of nodes of the tire model was dramatically reduced, and thus its simulation time was several times less than the classical model. Bead, carcass, belt which have an important role to the dynamic characteristics of tire were replaced by simple axis symmetric membrane elements. Also the rebar element was deleted. The tire model has been verified by comparing vertical stiffness data of the simulation model to the test data.

  • PDF

The study on tire Pattern Noise (타이어 패턴 소음에 대한 고찰)

  • Hwang, S.W.;Bang, M.J.;Rho, G.H.;Cho, C.T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.340-343
    • /
    • 2006
  • As the needs of consumer on ride comforts increase and the reduction of road traffic noise tightened step by step, the power unit noise emitted by cars has been reduced. It has been found that tire noise dominates noise produced by the power-train when vehicles are driven at high speeds. Therefore, in these days, tire/pavement noise is concerned. Tire/pavement noise is affected by pavement type and vehicle???s transmission loss. Tire noise mechanism is produced by several mechanisms. The sound of tire can propagate either through the air or through the structure of vehicle. Pattern noise is the result of pressure variations through the air to the interior side of vehicle. Especially, on smooth asphalt the periodicity of tread design, pitch sequence is important factor, which have an influence on the reduction of tire noise.

  • PDF

A control and measurement system design for 3-axis pressure and 2-axis displacement on tire road interface (타이어 접지면의 3축방향 압력과 평면변위 측정을 위한 제어계측시스템의 설계)

  • Lim, Young-Cheol;Ryoo, Young-Jae;Cho, Gyu-Jong;Kim, Nam-Jeon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.1
    • /
    • pp.58-62
    • /
    • 1995
  • Necessarily, it is required to analyze interfacial mechanism between tire and road for understanding tire wear, vehicle tracking and breaking. Therefore, there have been some efforts to measure 3-axis pressure and 2-axis displacement on tire road interface. But it was so hard to couple precisely measuring sensor and desired point on tire tread pattern block that it was impossible to analyze the mechanism on commercial tire with tread pattern. To overcome such a problem, a on-line measurement system is proposed in this paper. And an automatic control system is designed to test the tire with similar configuration of real vehicle driving.

  • PDF