• Title/Summary/Keyword: Vehicle Suspension

Search Result 704, Processing Time 0.025 seconds

A Study on Adopting Active Suspension Control in Sky Hook System (스카이훅 시스템에의 능동 서스펜션 제어 이론 적용에 관한 연구)

  • Park Jung-Hyen;Jang Seung-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.950-955
    • /
    • 2006
  • This paper prosed modelling and design method in suspension system sesign to analyze sky hook damper system by adopting active suspension control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is hon that sky hook suspension system is better than passive spring-damper system in designing suspension equipment. We analyze location of damper in sky hook system and its motion equation then design robust control system. Numerical example is shown for validity of robust control system design in active sky hook suspension system.

Evaluation of Impact Factor in Suspension Bridges under A Series of Moving Vehicles (일련의 주행 차량에 의한 현수교의 충격계수 평가)

  • Park, Yong Myung;Kim, Dong Hyun;Kim, Hee Soon;Park, Jae Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.5
    • /
    • pp.485-498
    • /
    • 2014
  • In this paper, vehicle-bridge interaction analysis under a series of moving vehicles to simulate a lane load was performed to estimate impact factor of the main cable, hanger and girder for the selected suspension bridges with 404m and 1545m main span. Korea Bridge Design Code(Limit State Design) was selected for the live model in which KL-510 truck was modeled 6-d.o.f. vehicle and a lane load was simulated by a series of single-axle vehicles. For the 404m main span bridge, hinge-type and floating-type girders at the tower were considered to examine the impact factor according to the connection and supporting type of the girders. The parameters considered herein are the types of live load-a truck only and a truck plus lane load, eccentricity of moving vehicles, road surface roughness and vehicle speed. The road surface roughness was randomly generated based on ISO 8608 and it was applied to the truck only. The impact factors were also evaluated by using the influence line method that is commonly used in cable-supported bridges and compared with those from vehicle-bridge interaction analysis.

Ride comfort assessment of road vehicle running on long-span bridge subjected to vortex-induced vibration

  • Yu, Helu;Wang, Bin;Zhang, Guoqing;Li, Yongle;Chen, Xingyu
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.393-402
    • /
    • 2020
  • Long-span bridges with high flexibility and low structural damping are very susceptible to the vortex-induced vibration (VIV), which causes extremely negative impacts on the ride comfort of vehicles running on the bridges. To assess the ride comfort of vehicles running on the long-span bridges subjected to VIV, a coupled wind-vehicle-bridge system applicable to the VIV case is firstly developed in this paper. In this system, the equations of motion of the vehicles and the bridge subjected to VIV are established and coupled through the vehicle-bridge interaction. Based on the dynamic responses of the vehicles obtained by solving the coupled system, the ride comfort of the vehicles can be evaluated using the method given in ISO 2631-1. At last, the proposed framework is applied to several case studies, where a long-span suspension bridge and two types of vehicles are taken into account. The effects of vehicle speed, vehicle type, road roughness and vehicle number on the ride comfort are investigated.

Development of Real Time Multibody Vehicle Dynamics Software Part I : Real Time Vehicle Model based on Subsystem Synthesis Method (실시간 다물체 차량 동역학 소프트웨어 개발 Part Ⅰ: 부분시스템 합성방법에 의한 실시간 차량 모델)

  • Kim, Sung-Soo;Jeong, Wan-Hee;Lee, Chang-Ho;Jung, Do-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.162-168
    • /
    • 2009
  • The real-time multibody vehicle model based on the subsystem synthesis method has been developed. Suspension, anti roll bar, steering, and tire subsystem models have been developed for vehicle dynamics. The compliance effect from bush element has been considered using a quasi-static method to achieve the real time requirement. To validate the developed vehicle model, a quarter car and a full vehicle simulations have been carried out comparing simulation results with those from the ADAMS vehicle model. Real time capability has been also validated by measuring CPU time of the simulation results.

A Study for the Reliability Based Design Optimization of the Automobile Suspension Part (자동차 현가장치 부품에 대한 신뢰성 기반 최적설계에 관한 연구)

  • 이종홍;유정훈;임홍재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.123-130
    • /
    • 2004
  • The automobile suspension system is composed of parts that affect performances of a vehicle such as ride quality, handling characteristics, straight performance and steering effort, etc. Moreover, by using the finite element analysis the cost for the initial design step can be decreased. In the design of a suspension system, usually system vibration and structural rigidity must be considered simultaneously to satisfy dynamic and static requirements simultaneously. In this paper, we consider the weight reduction and the increase of the first eigen-frequency of a suspension part, the upper control arm, especially using topology optimization and size optimization. Firstly, we obtain the initial design to maximize the first eigen-frequency using topology optimization. Then, we apply the multi-objective parameter optimization method to satisfy both the weight reduction and the increase of the first eigen-frequency. The design variables are varying during the optimization process for the multi-objective. Therefore, we can obtain the deterministic values of the design variables not only to satisfy the terms of variation limits but also to optimize the two design objectives at the same time. Finally, we have executed reliability based optimal design on the upper control arm using the Monte-Carlo method with importance sampling method for the optimal design result with 98% reliability.

Estimation of Dynamic Characteristics of Namhae Suspension Bridge Using Ambient Vibration Test (상시진동을 이용한 남해대교의 동특성 평가)

  • Kim, Nam-Sik;Kim, Chul-Young;Jung, Dae-Sung;Yoon, Jah-Geol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.988-993
    • /
    • 2002
  • The AVT under traffic-induced vibrations was carried out on Namhae suspension bridge in Korea. Mode shapes as well as natural frequencies up to the 15th mode were acquired exactly, and the effect of traffic mass and temperature on measured natural frequencies was investigated. The results from the AVT are compared with those from forced vibration test(FVT) and FE analysis. In the case of long span suspension bridges such as Namhae bridge which has relatively large mass, the results shows that the measured natural frequencies are not affected by vehicle mass. From the results of long-term variation of natural frequencies due to temperature change, it can be said that temperature effect may be predominant to structural demage effect. Therefore, if damage detection methods based on dynamic characteristics of bridges are to be used, the variation should be taken into consideration.

  • PDF

A Study on the Non-Linear Static Analysis for L-type Front Lower Control Arm (L 형 전륜 로어 암의 대하중 강도 해석 기법 연구)

  • Lee, Soon-Wook;Koo, Ja-Suk;Song, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.453-458
    • /
    • 2008
  • Under driving condition, A vehicle experiences various kinds of loads, which brings on the buckling and fracture of suspension systems. Lower control arm (LCA), which consists of 2 bush joints and 1 ball joint connection, is the one of the most important parts in the suspension system. The bush joints absorb the impact load and reduce the vibration from the road. When analyzing the LCA behavior, it is important to understand the material properties and boundary conditions of bushing systems correctly, because of the nonlinearity characteristics of the rubber. In this paper, in order to predict the large scale deformation of the LCA more precisely, three factors are newly suggested, that is, coupling of bush stiffness between translation and rotation, bush extraction force and maximum rotation angle of ball joint. LCA stiffness is estimated by CAE and component test. Analysis and test results are almost same and the validity of considering three factors in LCA analysis is verified.

  • PDF

A Study on the Automotive Suspension System for Energy Efficiency (에너지 절감형 자동차용 현가장치에 관한 연구)

  • 소상균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.100-107
    • /
    • 2001
  • The main goals of the automotive suspension systems are to isolate roadway unevenness from the tire and to improve vehicle stability. To overcome the performance limitation of the passive systems the active systems which completely replace the passive spring and damper elements with a force generating actuator has been studied. However, application of the system has been limited because it has required a significant amount of power. Recently, alternative systems which retain passive elements but include active elements have been developed to reduce the power required. Those systems are mostly focused on the control system which compresses the spring-damper directly. In this study, a new type of power efficient control system which makes the spring-damper unit slide in side way is studied. After constructing the control system including dynamic modeling and motion control, two types of alternative control systems are compared in view of power consumption and dynamic attitudes such as roll responses as well as heave responses. Also, a half car bond graph model is developed to show clearly the significant differences in performances between two control systems.

  • PDF

Optimization of the Suspension Characteristics for a High Speed Electrical Multiple Train on the Stage of Basic Design (기본설계 단계에서 분산형 고속철도차량의 현가요소 최적화)

  • Park, Chan-Kyoung;Mok, Jin-Yong;Kim, Ki-Whan
    • Proceedings of the KSR Conference
    • /
    • 2009.05b
    • /
    • pp.183-188
    • /
    • 2009
  • The High speed electrical multiple train having a distributed electrical motor system has just been developing to aim the experimental maximum speed at 400km/h since August, 2007. This project comes in stage of basic design and so, it needs to take some review and analysis the characteristics of suspensions on the view of basic design. The vehicle model for dynamic analysis is made from the concept design model that used for the preliminary design review with Vampire program and it is modeled with three linear secondary dampers and two shear springs separated from the bush elements in previous model. The optimization technique is applied to search the proper range of linear characteristics for the suspension elements to satisfy the stability performance at speed 130m/s (about 460km/h). The results shows there are some optimum points according to the variation of primary and secondary suspension characteristics and it would be useful to make a decision to select the proper suspension elements in the precision design that will be done by the manufacturing company.

  • PDF

EXPERIMENTAL STUDY ON THE BUSHING CHARACTERISTICS UNDER SEVERAL EXCITATION INPUTS FOR BUSHING MODELING

  • Ok, J.K.;Yoo, W.S.;Sohn, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.455-465
    • /
    • 2007
  • The bushing element shows nonlinear characteristics in both displacements and frequencies, also with hysteretic responses for repeated vibrational excitations. Since the characteristics of the rubber bushing significantly affects the accuracy of the vehicle dynamic simulation result, it should be accurately modeled in the vehicle suspension model. To develop an accurate bushing model for vehicle dynamics analysis, the bushing characteristics under several excitation inputs must be known. In this paper, a 3-axis tester was used to capture the bushing characteristics. The random inputs, sine inputs, and step inputs were imposed on each axis of the bushing. Also, two-axis inputs, the radial-axial and radial-normal inputs, were simultaneously imposed on the tester. Three-axis inputs including the radial-axial-normal direction were supplied to the tester. Bushing characteristics of each case were precisely analyzed. These results could be available for dynamic modeling of bushing.