• Title/Summary/Keyword: Vehicle Suspension

Search Result 704, Processing Time 0.025 seconds

Semi-Active Control for Improving Ride Comfort in Railway Vehicle by MR Damper (MR 댐퍼를 이용한 철도차량 승차감 반능동 제어)

  • Shin, Yu-Jeong;You, Won-Hee;Jung, Heung-Chae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1929-1934
    • /
    • 2011
  • Recently the maximum speed becomes the most important performance in high speed train. But the speed up of train will not give the passenger good riding comfort. The semi-active suspension system by using variable damper with hydraulic solenoid valve is used to solve this problem. But the variable damper with hydraulic solenoid valve requires tank for supplying fluid. In this study, the MR(Magneto Rheological) damper was considered instead of hydraulic variable damper in order to improve riding comfort. Dynamic simulation was conducted for semi-active suspension system with MR damper was made by using Matlab-Simulink S/W. According to control strategy of MR damper for improving ride comfort in railway vehicle, The riding comfort of the railway vehicle with semi-active suspension system was analyzed and compared with conventional suspension system by using the program.

  • PDF

Testing and experimental characterization of a linear permanent magnet actuator for active vehicle suspension

  • Wang, Jiabin;Wang, Weiya
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.509-516
    • /
    • 2012
  • This paper describes the testing and experimental characterization of a linear permanent magnet actuator, which is designed and developed for active vehicle suspension, under both static and dynamic conditions. Since the active suspension unit operates over a wide force-velocity range with varying duty ratios, it is essential to establish an effective thermal model which can be used for assessing temperature rise of the actuator under various operating conditions. The temperature rise of the actuator is measured and the results are compared with the prediction by the derived transient thermal model. It is shown that the measured actuator parameters and characteristics are closed to their predicted values. The linear actuator is controlled by a dSPACE system via a three phase inverter and its velocity tracking performance is presented.

A Study on the Test Standards at Low Temperature of Rubber Suspension Components of Railway Vehicle (철도차량 고무 현가부품의 내한성 시험기준연구)

  • Yoon, Tae-Ho;Jang, Seung-Ho;Choi, Byoung-Il;Lee, Chan-Woo;Na, Hee-Seung
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.372-376
    • /
    • 2004
  • In this paper, the standard test methods at low temperature of rubber suspension components of railway vehicle are investigated and reviewed. In order to connect the TKR(Trans-Korean Railway)-TSR(Trans-Siberian Railway), it is necessary to evaluate the performance of rubber suspenion components of railway vehicle. In the current Korean Standard, the test method at low temperature of railway vehilce components and the test method of rubber bellows of air spring are specified. But, the specified test temperature is higher than the the operating temperature of TSR railway. So, the in-depth research for the test method and performance evaluation technique of rubber suspension component at low temperature is necessary and current KS code should be adjusted.

  • PDF

Modeling of Military Vehicle Suspension System Featuring Disc Spring and MR Valve (접시 스프링과 MR Valve를 적용한 군용차량 현수장치의 모델링)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Rhee, Eun-Jun;Kang, Pil-Soon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.979-986
    • /
    • 2009
  • This paper presents a dynamic modeling of a military vehicle suspension featuring disc spring and MR valve. Firstly, the dynamic model of the disc spring is established with respect to the load and pressure. The nonlinear behavior of the spring is incorporated with the model. Secondly, the dynamic model of the MR valve is derived by considering the pressure drop due to the viscosity and yield stress of MR fluid. The governing characteristics of the proposed suspension system are then investigated by presenting the field-dependent pressure drop of the MR valve and spring force of the gas spring.

Dynamics of the Macpherson Strut Motor-Vehicle Suspension System in Point and Joint Coordinates

  • Attia, Hazem-Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.9
    • /
    • pp.1287-1296
    • /
    • 2003
  • In this paper the dynamic analysis of the Macpherson strut motor-vehicle suspension system is presented. The equations of motion are formulated using a two-step transformation. Initially, the equations of motion are derived for a dynamically equivalent constrained system of particles that replaces the rigid bodies by applying Newton's second law The equations of motion are then transformed to a reduced set in terms of the relative joint variables. Use of both Cartesian and joint variables produces an efficient set of equations without loss of generality For open chains, this process automatically eliminates all of the non-working constraint forces and leads to an efficient solution and integration of the equations of motion. For closed loops, suitable joints should be cut and few cut-joints constraint equations should be included for each closed chain. The chosen suspension includes open and closed loops with quarter-car model. The results of the simulation indicate the simplicity and generality of the dynamic formulation.

Effect of the Parameter of the Suspension System on the the Vertical Vibration of the Passenger Vehicle (객차의 현가장치 변수가 상하진동에 미치는 영향)

  • Hur, Hyun-Moo;Kwon, Young-Pil;Choi, Kyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1309-1316
    • /
    • 2002
  • The purpose of this study is to analyze the effects of the parameters of the suspension system in railway rolling-stock for KT-23 type passenger vehicle. According to the results of simulation and the field test, Optimal condition was obtained for the stiffness ratio of the primary spring and the secondary of the suspension system. When the stiffness ratio was increased, the vibration was increased on the car body and decreased on the bogie, and ride quality are getting worse because of increase of the vertical natural frequency of the car body. The results of this study are usefull to improve the technology of the ride quality of KT-23 type vehicle.

A study on the magnetic suspension system for commercial vehicle (상용차용 마그네틱 현가기구 개발에 대한 연구)

  • Ju, Hyung-Jun;Kim, Dae-Sung;Lee, Bong-Hyun;Kim, Jung-In;Kim, Chan-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.409-414
    • /
    • 2011
  • The drivers of commercial vehicle easily feel tired because of a long time driving and bad road condition. Therefore it is very important to make the driver seat comfortable. This paper introduces the suspension system of driver's seat using magnetic force. The combination of linear spring and magnetic force can make nonlinear spring which has optimal stiffness for minimal vibration transmissibility. The vibrations of driver's seat floor are measured in various road condition. And the numerical simulations and experiments are performed to define the optimal parameter of magnetic suspension system.

  • PDF

Vibration Control of a Vehicle using ER Damper (ER댐퍼를 이용한 차량의 진동제어)

  • Joo, Dong-Woo;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.104-111
    • /
    • 1999
  • A semi-active suspension system for a vehicle using an Electrorheological Fluid damper has been studied. Apparent viscosity of ERF(Electrorheological Fluid) can be changed rapidly by applying electric field. The damping force of ER damper can be selectively controlled by employing electric field to the ER fluid domain. This paper deals with a two-degree-of-freedom suspension using the ER damper for a quarter car model. An intelligent control method using fuzzy control with genetic algorithm has been employed to control the damping force of the ER damper. The GA designs the optimal structure and performance of Fuzzy Net Controller having hybrid structure. The designed fuzzy net controller has been compared with the skyhook type controller for a quarter car model. The computer simulation results show that the semi-active suspension with ER damper has a good performance in the sense of ride quality with less vibration for ground vehicle.

  • PDF

Optimal Design of Vehicle Suspenion Systems Using Sensitivity Analysis (민감도 해석을 이용한 현가장치의 동역학적 최적설계)

  • 탁태오
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.50-61
    • /
    • 1994
  • A method for performing dynamic design sensitivity analysis of vehicle suspension systems which have three dimensional closed-loop kinematic structure is presented. A recursive form of equations of motion for a MacPherson suspension system is derived as basis for sensitivity analysis. By directly differentiating the equations of motion with respect to design variables, sensitivity equations are obtained. The direct generalize for the application of multibody dynamic sensitivity analysis. Based on the proposed sensitivity analysis, optimal design of a MacPherson suspension system is carried out taking unsprung mass, spring and damping coefficients as design variables.

  • PDF

Performance sensitivity analysis of feedback system for adaptive control of a vehicle suspension (자동차 현가장치의 적응제어를 위한 feedback 시스템의 성능감도 해석)

  • Park, H;Jeon, E. S.;Oh, J. E.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.35-45
    • /
    • 1991
  • A linear quarter model of a vehicle suspension system is built and simulated. Especially the so-called sensitivity analysis is conducted in order to show its applicability to design problems, and sensitivity function is determined in the frequency domain. The change of frequency response function is predicted, which depends on the design parameter variation and the property is verified by computer simulation. Typical performance measures, namely, sprung mass acceleration, suspension deflection, and tire deflection are examined. The vehicle model is analyzed for ist performance sensitivity as a function of the system's feedback gains. The variable feedback gains are selected as the spring and damping coefficients. Frequency response, RMS response, and performance index of the performance evaluation variables are considered and three-dimensional and contour plots of response surfaces are formed to examine output sensitivity to suspension feedback. Performance trade-offs over the entire frequency spectrum are identified from the FRF, and that between ride quality and handling characteristics are examined from the RMS responses.

  • PDF