• Title/Summary/Keyword: Vehicle Structure Vibration

Search Result 273, Processing Time 0.024 seconds

Flexibility Effects of the Vehicle Components on the Dynamic Characteristics of the Vehicle Systems (국부적 유연성이 차량 시스템 동특성에 미치는 영향)

  • 이상범;임홍재
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.682-686
    • /
    • 2001
  • A fundamental structural design consideration for a vehicle is the overall vibration characteristics in bending and torsion. Vibration characteristics of a vehicle system are mainly influenced by dynamic stiffness of the vehicle body structure and material and physical properties of the components attached to the vehicle body structure. The first step in satisfying this requirement is to obtain a satisfactory dynamic model of the vehicle structure. In this paper. modeling techniques of the vehicle components are presented and the effects of the vehicle components on the vibration characteristics of the vehicle are investigated,

  • PDF

Dynamic Characteristic Analysis of the Vehicle System Model (차량 시스템 모델의 동특성 해석)

  • Lee, Sang-Beom;Yim, Hong-Jae
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.459-464
    • /
    • 2001
  • Vibration characteristics of a vehicle are mainly influenced by dynamic stiffness of the vehicle body structure and material and physical properties of the components attached to the vehicle body structure. In this paper, modeling techniques of the vehicle components are presented and the effects of the vehicle components on the vibration characteristics of the vehicle are investigated.

  • PDF

Technology for Initial Design and Analysis of Vehicle Pillar Structures for Vibration (저진동 차체의 필라 설계 및 최전화 기법)

  • 임홍재;이상범
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.395-402
    • /
    • 1995
  • In general low frequency vibration characteristics like an idleshake is mainly influeced by pillar section properties and joints. So the design technique development of vehicle pillar structures is required to initial design and vehicle development stage. In this paper to develop pillar structure design technique considering low frequency vibration characteristics, strain energy method, design sensitivity analysis method, and design optimization method using commercial finite element analysis program and optimization program are presented.

  • PDF

A Study on the Vibration of Characteristics of 3-Dimension Submerged Vehicle in Consideration of Fluid-Structure Interaction (유체력을 고려한 3차원 수중압력선체의 진동특성에 관한 연구)

  • 손충렬;황인하;이강수
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.81-88
    • /
    • 2000
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures or ships is possible only when the fluid-structure interaction is understood, as the whole or part of the structure is in contact with water. Specially, the importance of the added mass is not necessary to say like the submerged vehicle, all of the hull body, is positioned in the water. This paper introduce two method to find natural frequency in consideration of fluid-structure modal coupled vibration analysis. The purpose of this study is to analyze of the vibration characteristic of submerged vehicle to obtain the anti-vibration design data, which could be used in the preliminary design stage data. Underwater pressure hull of submerged vehicle is used as the model of this study. The F.E.M model is meshed by shell and beam element. Also, considering of the inner hull weight, mass element is distributed in the direction of hull length. Numerical calculations are accomplished using the commercial B.E.M code. The characteristics of natural frequency(eigenvalues), mode shape(eigenvectors) and frequency-displacement response are analyzed. The results of this study will be used as the useful design data in preliminary anti-vibration design stage.

  • PDF

Analysis of Vibration Characteristics of Modular Unit by Road Test (도로 주행 시험을 통한 모듈러 유닛의 진동 특성 분석)

  • Kwak, Myong Keun;Back, Jung Hoon;Seol, Wook Je
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • The unit modular system is a type of prefabricated construction method that completes the building by uniting the modular units on site by transporting the unit module structure manufactured in the factory to the site. Since the unit module structure is not only the frame but also the finished form including the inner and outer materials, it is most likely to be brought into the field. Therefore, not only the damage of the inner and outer materials but also deformation of frame structure due to the vibration generated during the transportation of the vehicle, And it is necessary to take appropriate methods when transporting the module structure. However, there are no methods to prevent modular structure damage due to vehicle vibration in domestic and foreign modular transportation guidelines or standards. In this study, we investigate the vibrations during the vehicle transportation of the module structure through the road driving test, identify the vibration frequency characteristics of the vehicle through FFT analysis, and propose a vibration reduction methods for module transportation.

Flexibility Effects of Components on the Dynamic Behavior of Vehicle (부품의 국부적 유연성이 차량의 동적 거동에 미치는 영향)

  • 이상범;임홍재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.57-62
    • /
    • 2003
  • A fundamental structural design consideration for a vehicle system is the overall vibration characteristics in bending and torsion. Vibration characteristics of such vehicle system are mainly influenced by the static and dynamic stiffness of the vehicle body structure and also by the material and physical properties of the components attached to the vehicle body structure. In this paper, modeling techniques for the vehicle components are presented and the flexibility and mass effects of the components for the vibration characteristics of the vehicle are investigated. The $1^{st}$ torsional frequency is increased by attaching windshields to the B.I.W. (body-in-white), but the $1^{st}$ bending frequency is decreased by the mass effect. And also, the natural frequencies of the vehicle are large decreased by attaching bumpers, seats, doors, trunk-lid etc. But, suspension system rarely affects the natural frequencies of the vehicle. The study shows thai the dynamic characteristics of the vehicle system can be effectively predicted in the initial design stage.

A Study on the Vibration Characteristics of 3-Dimension Submerged Vehicle in Consideration of Fluid-Structure Interaction (유체력을 고려한 3차원 수중압력선체의 진동특성에 관한 연구)

  • 손충렬;김경수;변효인
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures or ships is possible only when the fluid-structure interaction is understood, as the whole or part of the structure is in contact with water. This paper introduces two methods to find natural frequency in consideration of fluid-structure interaction, direct coupled vibration analysis and fluid-structure modal coupled vibration analysis. The purpose of this study is to analyze the vibration characteristic of a submerged vehicle to obtain the anti-vibration design data, which could be used in the preliminary design stage. The underwater pressure hull of submerged vehicle is used as the model of this study. The F.E.M. model is meshed by shell and beam elements. Also, considering the inner hull weight, the mass element is distributed in the direction of hull length. Numerical calculations are accomplished by using the commercial B.E.M. code. The characteristics of natural frequency, mode shape and frequency-displacement response are analyzed.

  • PDF

Design Sensitivity Analysis for the Vibration Characteristic of Vehicle Structure (수송체 구조물의 진동특성에 관한 설계민감도 해석)

  • 이재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.19-24
    • /
    • 1992
  • Design sensitivity analysis method for the vibration of vehicle structure is developed using adjoint variable method. A variational approach with complex response method is used to derive sensitivity expression. To evaluate sensitivity, FEM analysis of ship deck and vehicle structure are performed using MSC/NASTRAN on the super computer CRAY2S, and sensitivity computation is carried on PC. The accuracy of sensitivity is verified by the results of finite difference method. When compared to structural analysis time on CRAY2S, sensitivity computation is remarkably economical. The sensitivity of vehicle frame can be used to reduce the vibration responses such as displacement and acceleration of vehicle.

  • PDF

A Study on Improvement of Aiming Ability using Disturbance Measurement in the Ground Military Vehicle (지상무기체계에서의 외란측정을 이용한 정밀 지향성 향상 연구)

  • Yoo, Jin-Ho;Park, Byung-Hun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.12-20
    • /
    • 2007
  • The aiming ability is a key to improve the accuracy performance of the gun pointing system in the ground military vehicle. This paper describes the new detection method of chatter vibration using disturbance acceleration in the pointing structure. In order to analysis the vibration trends of the pointing system occurred while the vehicle driving, acceleration data obtained from vehicle was processed by using data processing algorithm with moving average and Hilbert transform. The specific mode constants of acceleration were obtained from various disturbances. Vehicle velocity, road condition and property of pointing structure were considered as factors which make the change of vibration trend in vehicle dynamics. Finally, back propagation neural networks have been applied to the pattern recognition of the classification of vibration signal in various driving conditions. Results of signal processing were compared with other condition result and analysed.

A Study on Joint Design Factors for Low Vibration Vehicle (저진동 차량을 위한 결합부 인자 연구)

  • Lee, Jae-Woo;Sung, Young-Suk;Kang, Min-Seok;Lee, Sang-Beom;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.177-184
    • /
    • 2008
  • Vehicle body frame stiffness affects the dynamic and static characteristics. Vehicle frame structure performance is greatly affected by crossmember and joint design. While the structural characteristic of these joint vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in design cycle. This paper present the joint design factors affecting on low frequency vibration. The joint factors are joint panel thickness, flange width and weld point space. To study the effect on vehicle low frequency vibration, case studies for these factors are performed. The result can present design guide for high-stiffness vehicle.

  • PDF