• Title/Summary/Keyword: Vehicle Steering

Search Result 671, Processing Time 0.033 seconds

Obstacle avoidance using Vector Field Histogram in simulation (Vector Field Histogram를 이용한 장애물 회피 시뮬레이션)

  • 정현룡;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1076-1079
    • /
    • 2003
  • The vector field histogram(VFH) uses a two-dimensional Cartesian histogram grid as a world model. The VFH method subsequently employs a two-stage data-reduction process in order to compute the desired control commands for the vehicle. In the first stage the histogram grid is reduced to a one dimensional polar histogram that is constructed around the robot's momentary location. Each sector in the polar histogram contains a value representing the polar obstacle density in that direction. In the second stage, the algorithm selects the most suitable sector from among all polar histogram sectors with a low polar obstacle density, and the steering of the robot is aligned with that direction. We applied this algorithm to our simulation program and tested..

  • PDF

Analysis of large deformation and fatigue life of fabric braided composite hose subjected to cyclic loading

  • Cho, J.R.;Kim, Y.H.
    • Steel and Composite Structures
    • /
    • v.21 no.4
    • /
    • pp.949-962
    • /
    • 2016
  • The braking hose in the automotive hydraulic braking system exhibits the complicated anisotropic large deformation while its movable end is moving along the cyclic path according to the steering and bump/rebound motions of vehicle. The complicated large deformation may cause not only the interference with other adjacent automotive parts but also the durability problem resulting in the fatal microcraking. In this regard, the design of high-durable braking hose with the interference-free layout becomes a hot issue in the automotive industry. However, since it has been traditionally relied on the cost-/time-consuming trial and error experiments, the cost- and time-effective optimum design method that can replace the experiment is highly desirable. Meanwhile, the hose deformed configuration and fatigue life are different for different hose cyclic paths, so that their characteristic investigation becomes an important preliminary research subject. As a preliminary step for developing the optimum design methodology, we in this study investigate the hose deformed configuration and the fatigue life for four representative hose cyclic paths.

AAR's R&D Status on An Automated Measurement System for Wheel/Rail Contact Condition Inspection (미국철도협회의 차륜/레일 접촉상태 차상 자동검측 기술 개발 현황)

  • Chung, Heung-Chai
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.115-118
    • /
    • 2007
  • The geometry of wheel and rail profiles is the primary contributor to wheel and rail interaction. These profiles interact to influence truck steering, vehicle lateral stability, wheel/rail wear and surface damage. Maintaining good control of the profiles is one of the keys to ensuring preferred wheel and rail interaction. Transportation Technology Center, Inc., Pueblo, Colorado, is developing an automated measurement system for wheel/rail contact condition inspections supported by AAR(Association of American Railroads). The system uses a modified version of $WRTOL^{TM}$ (Wheel/Rail Tolerances)--software that performs extensive analysis of wheel and rail contact conditions

  • PDF

Durability Analysis due to Design Shape of Pinion Gear (자동차용 피니언 기어의 설계 형상에 따른 내구성 해석)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.16-21
    • /
    • 2020
  • The structural analyses were conducted with three models of pinion gears connected to the rack gear which is driven by the steering axle at an automobile. Three models 1, 2 and 3 are designed as the different pinion gears due to the vehicle type. The lower the value of maximum stress, the better the durability of model. Model 3 has the best durability among three models. Models 1 and 2 are expected to require the adjustment in order to improve the durability better. By the utilization of this study result, it is thought to apply at designing the pinion gear with durability at the automobile.

The Optimization Design of Engine Cradle using Hydroforming (하이드로포밍을 이용한 엔진크래들 최적설계)

  • Oh, Jin-Ho;Lee, Gyu-Min;Choi, Han-Ho;Park, Sung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.571-575
    • /
    • 2008
  • An engine cradle is a quite important structural assembly for supporting the engine, suspension and steering parts of vehicle and absorbing the vibrations during the drive and the shock in the car crash. Recently, the engine cradle having structural stiffness enough to support the surrounding parts and absorbing the shock of collision has been widely used. The hydroforming technology may cause many advantages to automotive applications in terms of better structural integrity of parts, reduction of production cost, weight reduction, material saving, reduction in the number of joining processes and improvement of reliability. We focus on increasing the durability and the dynamic performance of engine cradle. For realizing this objective, several optimization design techniques such as shape, size, and topology optimization are performed. This optimization scheme based on the sensitivity can provide distinguished performance improvement in using hydroforming.

  • PDF

Map-Based Control for Autonomous Tractors

  • Han, S.;Shin, B.S.;Zhang, Q.
    • Agricultural and Biosystems Engineering
    • /
    • v.4 no.1
    • /
    • pp.22-27
    • /
    • 2003
  • An autonomous tractor requires not only automatic steering (automatic guidance) but also automated control of tractor functions and implement operations. Examples of tractor functions include engine throttle, transmission speed, and 3-point hitch position. Implement operations include tillage, planting, and cultivating. This article provides an overview of a map-based methodology used for the implementation of autonomous field operations of agricultural tractors. The procedure for developing autonomous field operation maps were presented, and several important issues in the implementation of map-based autonomous operations were discussed. These issues included combining field operation maps, position offset, and real-time sensing and update of field operation maps.

  • PDF

A New Driving Mechanism to Allow a Rescue Robot to Climb Stairs

  • Lim, Sung-Kyun;Park, Dong-II;Kwak, Yoon-Keun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.3
    • /
    • pp.3-7
    • /
    • 2007
  • There have been numerous studies directed toward the development of driving mechanisms for off-road mobility and rescue robots. To achieve surveillance, reconnaissance, and rescue, it is necessary for robots to have a driving mechanism that can handle off-road environments, We propose a new type of single-track driving mechanism with a variable geometry for a rescue robot, This mechanism has a symmetric configuration so that the robot can advance in two directions and also remain operable when overturned. By transforming its geometry, the robot can reduce energy consumption in steering and rotating as well as maximize its ability to climb obstacles such as stairs. The robot is also designed to have a compact size and low center of gravity to facilitate driving when on a set of stairs. In this paper, we analyzed the design parameters of the robot for the four phases of climbing stairs and determined the specifications needed to enhance its adaptability.

Durability Analysis of Automotive AHSS Component Considering GMAW Condition (GMAW 용접조건을 고려한 자동차 AHSS 샤시부품의 내구해석)

  • Kwon, Hyuk-Sun
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.83-83
    • /
    • 2009
  • The automotive chassis components are structural assemblies that support the engine, suspension, and steering components of the vehicle. For the development of AHSS components, the durability analysis is important. In this paper, the low cycle fatigue property of AHSS was evaluated for the geometry complex and local plasticity in the base material. The GMAW optimization was implemented for the weld soundness using the moving least square method. And the weld S-N curves of AHSS were evaluated to access durability analysis for the weld region. For the verification, the durability analysis of the couple torsion beam axle (CTBA) was performed and compared to the rig test result. The durability analysis using the low cycle fatigue property and the evaluated weld S-N curve of AHSS met the good agreement with the test result.

  • PDF

A Study of Line Recognition and Driving Direction Control On Vision based AGV (Vision을 이용한 자율주행 로봇의 라인 인식 및 주행방향 결정에 관한 연구)

  • Kim, Young-Suk;Kim, Tae-Wan;Lee, Chang-Goo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2341-2343
    • /
    • 2002
  • This paper describes a vision-based line recognition and control of driving direction for an AGV(autonomous guided vehicle). As navigation guide, black stripe attached on the corridor is used. Binary image of guide stripe captured by a CCD camera is used. For detect the guideline quickly and extractly, we use for variable thresholding algorithm. this low-cost line-tracking system is efficiently using pc-based real time vision processing. steering control is studied through controller with guide-line angle error. This method is tested via a typical agv with a single camera in laboratory environment.

  • PDF

SE Application of Smart UAV Development Program (스마트 무인기 개발 프로그램의 시스템 엔지니어링 적용)

  • Lee, Jung Jin;Kim, Jai Moo;Lim, Cheol Ho
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.49-55
    • /
    • 2005
  • The Smart UAV Program was motivated by a huge potential market, a various application and future core technologies. The Smart UAV system is defined as the advanced air vehicle with the smart technology such as collision awareness and avoidance, healthy monitering and self-recovering, intelligent active control. Due to the broad interest by government, industry and academia, Smart UAV development center and government steering committee were established. The organization of the Smart UAV program consists of domestic/international companies and academia. In this paper, the process and application of system engineering was introduced for Smart UAV development program.

  • PDF