• Title/Summary/Keyword: Vehicle Steering

Search Result 671, Processing Time 0.027 seconds

Development of a Neural-Fuzzy Control Algorithm for Dynamic Control of a Track Vehicle (궤도차량의 동적 제어를 위한 퍼지-뉴런 제어 알고리즘 개발)

  • 서운학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.142-147
    • /
    • 1999
  • This paper presents a new approach to the dynamic control technique for track vehicle system using neural network-fuzzy control method. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by simulation for trajectory tracking of the speed and azimuth of a track vehicle.

  • PDF

A Study on Braking and Driving Force Distribute Control for Active Traction Control System (능동 휠 토크 제어시스템 설계를 위한 제동력${\cdot}$구동력 배분제어에 관한연구)

  • Park Jung-hyen;Kim Soon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1402-1406
    • /
    • 2005
  • A study on the vehicle stability is discussed. In the field of the studies the electronic control systems help overcoming the limit of improvement in vehicle performance with the methods above. Driving stability is mainly incorporated with the later motion of a vehicle generated by the driver's steering input. Recently VDC system has been studieed in order to improve the active stability. This VDC system uses the active braking force. This paper propose the ATC that uses driving force. This paper compared VDC with ATC through an experiment.

A Study on Driving Control of an Autonomous Guided Vehicle Using Humoral Immune Algorithm(HIA) Adaptive Controller (생체면역알고리즘 적응 제어기를 이용한 AGV 주행제어에 관한 연구)

  • Lee, K.S.;Suh, J.H.;Lee, Y.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.194-201
    • /
    • 2005
  • In this paper, we propose an adaptive mechanism based on humoral immune algorithm and neural network identifier technique. It is also applied for an autonomous guided vehicle (AGV) system. When the immune algorithm is applied to the PID controller, there exists the case that the plant is damaged due to the abrupt change of PID parameters since the parameters are almost adjusted randomly. To slove this problem, we use the neural network identifier technique for modeling the plant humoral immune algorithm (HIA) which performs the parameter tuning of the considered model, respectively. Finally, the experimental results for control of steering and speed of AGV system illustrate the validity of the proposed control scheme. Also, these results for the proposed method show that it has better performance than other conventional controller design method such as PID controller.

  • PDF

Collision Avoidance using Model Predictive Control (모델 예측 제어를 활용한 충돌 회피)

  • Choi, Jaewoong;Seo, Jongsang;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.32-38
    • /
    • 2013
  • This paper presents collision avoidance using model predictive control algorithm. A model predictive control algorithm determines lateral tire force and yaw moment and steering angle input and differential braking input is determined from lateral tire force and yaw moment. A constraint for model predictive control is designed for obstacle avoidance. A objective function is designed to minimize lateral tire force and yaw moment input and to follow changed lane after collision avoidance. The performance of proposed algorithm has been investigated via computer simulation conducted to vehicle dynamic software CARSIM and Matlab/Simulink.

Model-Based Fault Detection and Failsafe Logic Development (지능화 차량의 고장진단 로직 개발)

  • Min, Kyong-Chan;Kim, Jung-Tae;Lee, Gun-Bok;Lee, Kyong-Su
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.774-779
    • /
    • 2004
  • This paper describes the fault detection and failsafe logic to be used in the Electronic Stability Program (ESP). The Aim of this paper is prevention of erroneous control in the ESP. This paper introduces the fault detection logic and evaluation of residual signals. Failsafe logic consist of four redundant sub-models and they can be used for the detection of faults in each sensor (yaw rate, lateral acceleration, steering wheel angle). We presents two mathematical residual generation method ; one is the method by the average value, and the other is the method by the minimum value of the each residual. We verify a failsafe logic using vehicle test results, also we compare vehicle model based simulation results with test vehicle results.

  • PDF

Controller design for an autonomous underwater vehicle using nonlinear observers

  • Negahdaripour, Shahriar;Cho, So-Hyung;Kim, Joon-Young
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.16-27
    • /
    • 2011
  • The depth and heading control of an autonomous underwater vehicle (AUV) are considered to follow the predetermined depth and heading angle. The proposed control algorithm was based on a sliding mode control, using estimated hydrodynamic coefficients. The hydrodynamic coefficients were estimated employing conventional nonlinear observer techniques, such as sliding mode observer and extended Kalman filter. Using the estimated coefficients, a sliding mode controller was constructed for a combined diving and steering maneuver. The simulated results of the proposed control system were compared with those of a control system that employed true coefficients. This paper demonstrated the proposed control system, and discusses the mechanisms that make the system stable and accurately follow the desired depth and heading angle in the presence of parameter uncertainty.

Adaptive Variable Weights Tuning in an Integrated Chassis Control for Lateral Stability Enhancement (횡방향 안정성 향상을 위한 통합 섀시 제어의 적응 가변 가중치 조절)

  • Yim, Seongjin;Kim, Wooil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.103-111
    • /
    • 2016
  • This paper presents an adaptive variable weights tuning system for an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) for lateral stability enhancement. After calculating the control yaw moment needed to stabilize a vehicle with a controller design method, it is distributed into the tire forces generated by ESC and AFS using weighted pseudo-inverse-based control allocation (WPCA). On a low friction road, lateral stability can deteriorate due to high vehicle speed. To cope with the problem, adaptive tuning rules on variable weights of the WPCA are proposed. To check the effectiveness of the proposed method, a simulation was performed on the vehicle simulation package, CarSim.

Development of a finite Element Model for Studying the Occupant Behavior and Injury Coefficients of a Large-sized Truck (대형트럭 승객거동과 상해치 해석을 위한 유한요소모델의 개발)

  • O, Jae-Yun;Kim, Hak-Deok;Song, Ju-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1577-1584
    • /
    • 2002
  • This paper develops a finite element model for studying the occupant behavior and injury cofficients of a large-sized cab-over type truck. Since it does not have a room to absorb collision energy and deformation in front of the passenger compartment the deformation is directly transmitted to the passenger compartment. Moreover, since its steering column is attached on the frame, severe deformation of the frame directly affects on the steering wheel's movement. Therefore, if the occupant behavior and injury coefficients analysis is performed using a finite element model developed based on a sled test, it is very difficult to expect acquiring satisfactory results. Thus, the finite element model developing in this paper is based on the frontal crash test in order to overcome the inherent problems of the sled test based model commonly used in the passenger car. The occupant behavior and injury coefficients analysis is performed using PAM-CRASH installed in super-computer SP2. In order to validate the reliability of the developed finite element model, a frontal crash test is carried out according to a test method used fur developing truck occupant's secondary safety system in european community and japan. That is, test vehicle's collision direction is vertical to the rigid barrier and collision velocity is 45kph. Thus, measured vehicle pulses at the lower parts of the left and right B-pilla., dummy chest and head deceleration profiles, HIC(head injury criterial) and CA(chest acceleration) values, and dummy behavior from the frontal crash test are compared to the analysis results to validate reliability of the developed model.

Analysis of Control Performance using RPS System (RPS 시스템을 이용한 차량 제어 특성 해석)

  • Kim, Hyo-Juu;Lee, Chang-Ro
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.160-166
    • /
    • 2018
  • This paper proposes an advanced suspension system and reports its performance in the framework of the preview control algorithm based on the RPS (road profile sensing) system and MSD system with the multi-stage damping characteristics. Typical disturbance inputs that cause excessive vibration and steering instability of an automobile are irregular obstacles that protrude or sink into the road surface to be driven. The control performance can be improved if information on the existence and shape function of its obstacle is known. Based on the results of the previous study, advanced research that uses the actuating system has been processed to be commercialized practically. For this purpose, a switching algorithm between the control logic and the multi-stage damping system was developed and its connectivity is presented. To verify the applicability of an actual vehicle, the proposed control system was implemented in full vehicle models and simulations were performed. The proposed system using the 3-DS actuator system, which is applied for structural simplicity, can improve the ride comfort and steering stability. In addition, the results indicate the feasibility of the intelligently controlled suspension system.

A Design of Collision Avoidance System of an Underwater Vehicle (수중운동체의 충돌회피시스템에 대한 연구)

  • Nam-Sun Son;Key-Pyo Rhee;Sang-Mu Lee;Dong-Jin Yeo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.4
    • /
    • pp.23-29
    • /
    • 2001
  • An Obstacle Avoidance System(OAS) of Underwater Vehicle(UV) in diving and steering plane is investigated. The concept of Imaginary Reference Line(IRL), which acts as the seabed in the diving plane, is introduced to apply the diving plane avoidance algorithm to the steering plane algorithm. Furthermore, the distance to the obstacle and the slope information of the obstacle are used for more efficient and safer avoidance. As for the control algorithm, the sliding mode controller is adopted to consider the nonlinearity of the equations of motion and to get the robustness of the designed system. To verify the obstacle avoidance ability of the designed system, numerical simulations are carried out on the cases of some presumed three-dimensional obstacles. The effects of the sonar and the clearance factor used in avoidance algorithm are also investigated. Through these, it is found that the designed avoidance system can successfully cope with various obstacles and the detection range of sonar is proven to bea significant parameter to the performance of the avoidance.

  • PDF