DOI QR코드

DOI QR Code

RPS 시스템을 이용한 차량 제어 특성 해석

Analysis of Control Performance using RPS System

  • 김효준 (강원대학교 기계공학과) ;
  • 이창노 (우석대학교 기계자동차공학과)
  • Kim, Hyo-Juu (Department of Mechanical Engineering, Kangwon National University) ;
  • Lee, Chang-Ro (Department of Mechanical and Automotive Engineering, Woosuk University)
  • 투고 : 2018.02.28
  • 심사 : 2018.05.04
  • 발행 : 2018.05.31

초록

본 연구에서는 주행하는 도로면의 단면 형상 정보를 이용하는 RPS 시스템과 다원형 감쇠 특성을 가지는 MSD 시스템을 기반으로 예견 제어 알고리즘을 적용한 지능형 현가 시스템을 제안하고, 그 결과를 제시하였다. 자동차의 과도한 진동과 조종 불안정성을 유발하는 대표적인 외란 입력은 주행하는 도로면에 돌출되거나 함몰된 불규칙한 주행 장애물이다. 이러한 장애물의 존재 유무만이 아니라 그 형상에 대한 정보를 안다면 이를 활용하여 제어 성능을 개선시킬 수 있다. 선행 연구 결과를 바탕으로 하여, 상용성을 고려한 구조화된 작동 시스템을 적용한 응용 연구를 수행하였다. 이를 위해 RPS 시스템과 예견 제어 기법을 기반으로 한 제어 알고리즘과 다차원화된 감쇠 특성을 가지는 MSD 시스템 간의 스위칭 알고리즘을 개발, 연계성을 제시하였다. 실차 적용성을 파악하기 위하여, 제안된 제어 프레임을 전차량 모델에 구현하여 시뮬레이션을 수행하였다. 구조적 간결성을 목표로 적용된 3-DS 작동기 시스템과 결합된 전자제어식 현가 시스템을 통하여 탑승자의 승차감과 차체의 조종 안정성을 효과적으로 개선할 수 있음과 제 시스템의 유용성을 확인하였다.

This paper proposes an advanced suspension system and reports its performance in the framework of the preview control algorithm based on the RPS (road profile sensing) system and MSD system with the multi-stage damping characteristics. Typical disturbance inputs that cause excessive vibration and steering instability of an automobile are irregular obstacles that protrude or sink into the road surface to be driven. The control performance can be improved if information on the existence and shape function of its obstacle is known. Based on the results of the previous study, advanced research that uses the actuating system has been processed to be commercialized practically. For this purpose, a switching algorithm between the control logic and the multi-stage damping system was developed and its connectivity is presented. To verify the applicability of an actual vehicle, the proposed control system was implemented in full vehicle models and simulations were performed. The proposed system using the 3-DS actuator system, which is applied for structural simplicity, can improve the ride comfort and steering stability. In addition, the results indicate the feasibility of the intelligently controlled suspension system.

키워드

과제정보

연구 과제 주관 기관 : 강원대학교

참고문헌

  1. M. Ali, "Twin accumulator semi active suspension system with preview control", Journal of Low Frequency Noise, Vibration and Active Control, vol. 26, no. 4, pp. 283-293, 2007. DOI: https://doi.org/10.1260/026309207783571334
  2. Z. Xie, P. Wong, J. Zhao, T. Xu, K. Wong, H. Wong, "A noise-insensitive semi-active air suspension for heavy-duty vehicle with an integrated fuzzy-wheel base preview control", Mathematical Problems in Engineering, vol. 2013, pp. 1-12, 2013. DOI: https://doi.org/10.1155/2013/974808
  3. C. Gohrle, A. Schindler, A. Wagner, O. Sawodny, "Road profile estimation and preview control for low-bandwidth active suspension systems", IEEE/ASME Transactions on Mechatronics, vol. 20, no. 5, pp. 2299-2310, 2015. DOI: https://doi.org/10.1109/TMECH.2014.2375336
  4. L. Li, F. Liao, "Parameter-dependent preview control with robust tracking performance", IET Control Theory & Applications, vol. 11, Iss. 1, pp. 38-46, 2017. DOI: https://doi.org/10.1049/iet-cta.2016.0361
  5. H. E. Tseng, D. Hrovat, "State of the art survey: active and semi-active suspension control", Vehicle System Dynamics, vol. 53, no. 7, pp. 1034-1062, 2015. https://doi.org/10.1080/00423114.2015.1037313
  6. H. J. Kim, "Robust roll motion control of a vehicle using integrated control strategy", Control Engineering Practice, vol. 19, pp. 820-827, 2011. DOI: https://doi.org/10.1016/j.conengprac.2011.04.009
  7. J. Lin, R.J. Lian, "Intelligent control of active suspension systems", IEEE Transactions on Industrial Electronics, vol. 58, no. 2, pp. 618-628, 2011. DOI: https://doi.org/10.1109/TIE.2010.2046581
  8. H. J. Kim, "Experimental study of active vibration control for trailed two-wheeled device", International Journal of Precision Engineering and Manufacturing, vol. 13, no. 2, pp. 363-369, 2012. DOI: https://doi.org/10.1007/s12541-012-0046-y
  9. H. M. Soliman, A. Benzaouia, H. Yousef, "Saturated robust control with regional pole placement and application to car active suspension", Journal of Vibration and Control, vol. 22, no. 1, pp. 258-269, 2016. DOI: https://doi.org/10.1177/1077546314528230
  10. R. J. Lian, "Enhanced adaptive self-organizing fuzzy sliding-mode controller for active suspension systems", IEEE Transactions on 1ndustrial Electronics, vol. 60, no. 3, pp. 958-968, 2013. DOI: https://doi.org/10.1109/TIE.2012.2190372
  11. T. P. J. Sande, I.J.M. Besselink, H. Nijmeijer, "Rule-based control of a semi-active suspension for minimal sprung mass acceleration: design and measurement", Vehicle System Dynamics, vol. 54, no. 3, pp. 281-285, 2016. DOI: https://doi.org/10.1080/00423114.2015.1135970
  12. A. Hac, I. Youn, "Optimal semi-active suspension with preview based on a quarter car model", Journal of Vibration and Acoustics, vol. 114, pp. 84-92, 1992. DOI: https://doi.org/10.1115/1.2930239
  13. G. Christoph, S. Andreas, W. Andreas, S. Oliver, "Design and vehicle implementation of preview active suspension", IEEE Transactions on Control Systems Technology, vol. 22, no. 3, pp. 1135-1142, 2014. DOI: https://doi.org/10.1109/TCST.2013.2272342