• Title/Summary/Keyword: Vehicle Steering

Search Result 671, Processing Time 0.032 seconds

Design of Course Keeping Controller for RIB-type USV Using a Pilot's Steering Pattern (조종자 입력패턴을 활용한 RIB형 무인선의 침로제어기 설계)

  • Yun, Kun-Hang;Yeo, Dong-Jin;Yoon, Hyeon-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.462-468
    • /
    • 2010
  • A new course keeping controller for RIB(Rigid Inflatable Boat)-type USV(Unmanned Surface Vehicle) is developed using pilot's steering pattern. A pilot's simple steering pattern is found out from various course change tests. It is used to course keeping algorithm, suitable for large course change more than 60 degrees. To validate the course keeping controller, sea trial tests are conducted. From sea trial test, new course keeping controller shows good performance with less overshoot, maximum roll angle less than $20^{\circ}$, which makes it possible that fast course changes without slip motion of USV.

Development of A Lane Departure Monitoring and Control System

  • Huh Kunsoo;Hong Daegun;Stein Jeffrey L.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.1998-2006
    • /
    • 2005
  • The lane departure avoidance systems have been considered promising to assist human drivers in AVCS (Advanced Vehicle Control System). In this paper, a lane departure monitoring and control system is developed and evaluated in the hardware-in-the-loop simulations. This system consists of lane sensing, lane departure monitoring and active steering control subsystems. The road image is obtained based on a vision sensor and the lane parameters are estimated using image processing and Kalman Filter technique. The active steering controller for avoiding the lane departure is designed based on the lane departure metric. The proposed lane departure avoidance system is realized in a steering HILS (hardware-in-the-loop simulation) tool and its performance is evaluated with a driver in the loop.

Design and Implementation of UCT/AGV Based Upon Steering Function (조향 함수를 고려한 UCT/AGV 설계 및 주행 기법에 관한 연구)

  • 윤경식;진태석;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.406-406
    • /
    • 2000
  • In this study, as a part developing an unmanned container terminal (UCT), Ive designed and implemented an Autonomous Ground Vehicle (AGV) that can deliver containers in the port fast and safely as they are scheduled. It is preferable to research the intelligent UCT/AGV for delivering containers all day long without causing any trouble. For the sake of safe and fast AGV driving, we implemented a multiple-sensor system with vision, ultrasonic, and IR sensors and we adapted the hight-speed wireless LAN that satisfies the IEEE 802.11 Standard for hi-directional communication between the main processor in AGV and a host computer. The Pentium-III processor board mounted on the bottom frame in AGV combines and computes the information from sensors and controls the AGV driving. There are also the 80C196KC micro-controllers to control the actuating and steering motors. In addition, a steering function that is defined newly in this paper is heavily concerned in the mechanical design, and it plays an important role when AGV moves along a curve. Experimental results show the fast and safe delivery operations are possible with this UCT/AGV

  • PDF

A Study of an Improvement of Swing-out Suppression Algorithm of an All Wheel Steering Electronic Control Unit (전 차륜 조향 시스템 전자 제어 장치의 스윙 아웃 억제 알고리즘 개선에 대한 연구)

  • Lee, Hyo-Geol;Chung, Ki-Hyun;Choi, Kyung-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.25-33
    • /
    • 2013
  • All-wheel steering (AWS) system is applied to articulated vehicles to reduce turning radius. The swing-out suppression algorithm is applied to AWS ECU, a key component of AWS system. The swing-out suppression algorithm applied to AWS ECU has a problem when velocity of vehicle is changed. In this paper, new algorithm based on moving distance that solve velocity problem is proposed. The HILS simulation and the test articulated bus is used to validate algorithm.

Development and Verification of the Steering Algorithm for Articulated Vehicles (굴절차량에 대한 조향알고리즘 개발 및 검증)

  • Moon, Kyeong-Ho;Lee, Soo-Ho;Mok, Jai-Kyun;Park, Tae-Won
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.3
    • /
    • pp.225-232
    • /
    • 2008
  • AWS (all wheel steering) is applied to improve the stability and the turning performance. Most automotive cars are mainly controlled by FWS (front wheel steering) system except some cars which are made to improve their stability by using AWS. Articulated vehicles with a pivoting joint for easy turn are difficult to make a sharp turn because of the long body and long wheelbase. Therefore applying AWS to the articulated vehicles is effective to reduce the turning radius. The AWS control method for the articulated vehicles is currently applied to only Phileas vehicles which were developed by APTS. The paper on the design of a controller to guide an articulated vehicle along the path was published but control algorithm for manual driving has not been reported. In the present paper, steering, characteristics of the Phileas vehicles have been analyzed and then new algorithm has been proposed. To verify the AWS algorithm, Commercial S/W, ADAMS was used for validity of the dynamic model and algorithm.

Development of HST electronic control system for combine (II)- Outdoor tests for control Characteristics - (콤바인 HST 전자제어시스템 개발- 제어특성 실외시험 -)

  • Seo, Sin-Won;Huh, Yun-Kun;Lee, Je-Yong;Lee, Chang-Kyu;Bae, Keun-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.121-128
    • /
    • 2011
  • I/An electro-hydraulic transmission having advantages of convenience, safety, simple linking and high power, and an electronic control system were designed and fabricated. In this study, characteristics of the control system were investigated through outdoor tests for evaluation of installation of the system on a combine. Major findings were as followings. 1. Experiment for performance evaluation of the control system was conducted on concrete road. With steering lever in neutral position, driving HST swash plate and left/right wheel speed increased in proportion to driving lever angle. In case of steering control, steering swash plate angle changed in proportion to steering lever angle. This should cause increase in outer wheel speed, but it was observed that HST swash plate was controlled toward neutral to maintain the speed before steering. As a result, speed before steering was maintained despite the change in outer wheel speed by steering HST swash plate angle change. 2. It was observed that the HST system enabled steering with outer wheel maintained at constant speeds while inner wheel speed decreased, which was more stable than conventional mechanical links. In addition, for the selected 5 criteria, experiment showed satisfactory results and it was judged that installation on real vehicle would be feasible. 3. The control system showed response property of appropriate forward/reverse movement and lift/right steering, without causing any problems during experiment on concrete. Result of response property experiment on field operation also showed appropriate control over forward/reverse movement and left/right steering.

Speed, Depth and Steering Control of Underwater Vehicles with Four Stem Thrusters - Simulation and Experimental Results (네 대의 주 추진기를 이용한 무인잠수정의 속도, 심도 및 방위각 제어 - 시뮬레이션 및 실험)

  • JUN BONG-HUAN;LEE PAN-MOOK;LI JI-HONG;HONG SEOK-WON;LEE JIHONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.2 s.63
    • /
    • pp.67-73
    • /
    • 2005
  • This paper describes depth, heading and speed control of an underwater vehicle that has four stern thrusters of which forces are coupled in the diving and, steering motion, as well as the speed of the vehicle. The optimal linear quadratic controller is designed based on a linearized- state space model, developed by combining the dynamic equations of speed, steering and diving motion. The designed controller gives provides an optimal thrust distribution, minimizing the given performance index to control speed, depth and heading simultaneously. To validate the performance of the controller, a simulation and tank-test are carried out with DUSAUV (Dual Use Semi-Autonomous Underwater Vehicle), developed by KORDI as a test-bed for testing new underwater technologies. Optimal gains of the controller are tuned, using a computer simulation environment with a nonlinear 6-DOF numerical DUSAUV model, developed by PMM (Planner Motion Mechanism) test. To verify the performance of the presented controller in experiment, a tank-test with DUSAUV is carried out in the ocean engineering basin in KORDI. The experimental results are also compared with the simulation results to investigate the accordance of the numerical and the real mode.

Study on Concurrent Simulation Technique of Matlab CMDPS and A CarSim Base Full Car Model (매트랩 CMDPS와 카심 기반 완전차량모델의 동시시뮬레이션 기술에 관한 연구)

  • Jang, Bongchoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.1555-1560
    • /
    • 2013
  • The Column type Motor Driven Power Steering(CMDPS) systems are generally equipped among passenger vehicles ensuring better vehicle safety and fuel economy. In general to analyze systems and to develop a controller a full vehicle model from CarSim developed by Mechanical Simulation Incorporation interacting with MDPS control algorithm from Matlab Simulink was concurrently simulated. This paper describes the development of concurrent simulation technique in detail for analyzing Matlab Simulink MDPS control system with a dynamic vehicle system because the specific method has not been revealed in detail. The steering wheel angle input was evaluated and well compared with proving ground experimental data. The comparisons from concurrent simulation show an effective way to develop and validate the control algorithm. This concurrent simulation capability will be efficiently used for CMDPS performance evaluation and logic tuning as well as for vehicle handling performance.

The Fuzzy Steering Control Using a Slope Direction Estimation Method for Small Unmanned Ground Vehicle (경사방향 추정 기법을 이용한 소형로봇의 퍼지 조향 제어)

  • Lee, Sang Hoon;Huh, Jin Wook;Kang, Sincheon;Lee, Myung Chun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.721-728
    • /
    • 2012
  • The tracked SUGVs(Small Unmanned Ground Vehicles) are frequently operated in the narrow slope such as stairs and trails. But due to the nature of the tracked vehicle which is steered using friction between the track and the ground and the limited field of view of driving cameras mounted on the lower position, it is not easy for SUGVs to trace narrow slopes. To properly trace inclined narrows, it is very important for SUGVs to keep it's heading direction to the slope. As a matter of factor, no roll value control of a SUGV can makes it's heading being located in the direction of the slope in general terrains. But, the problem is that we cannot directly control roll motion for SUGV. Instead we can control yaw motion. In this paper, a new slope driving method that enables the vehicle trace the narrow slopes with IMU sensor usually mounted in the SUGV is suggested which including an estimation technique of the desired yaw angle corresponding to zero roll angle. In addition, a fuzzy steering controller robust to changes in driving speed and the stair geometry is designed to simulate narrow slope driving with the suggested method. It is shown that the suggested method is quite effective through the simulation.

A Study on Developing Reverse Parking Assistant Algorithm for Hi-modal Tram (바이모달 트램의 후진주차보조 알고리즘 개발에 관한 연구)

  • Choi, Seong-Hoon;Park, Tae-Won;Lee, Soo-Ho;Moon, Kyeong-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.84-90
    • /
    • 2009
  • The bi-modal tram is under development as a new public transportation. The features of the tram are an extended wheel base and its length. This features result in difficulties for drivers on maneuvering the tram. Therefore, the all wheel steering system is applied to the articulated vehicle. The AWS system enables the vehicle to steer all the rear wheels independently and improves its driving characteristics. However, the bi-modal tram has a problem to move backward in the limited place because of its geometric feature and the AWS system. Hence, the reverse parking assistant algorithm for articulated vehicle is developed to solve the problems of the reverse parking. Using the vehicle model which includes the reverse parking assistant algorithm, the dynamic analysis is performed for several parking cases. By the result of the analysis, the stability and validity of the reverse parking assistant algorithm is verified.