• Title/Summary/Keyword: Vehicle Steering

Search Result 671, Processing Time 0.028 seconds

A Study on the Optimum Velocity of a Four Wheel Steering Autonomous Robot (4륜조향 자율주행로봇의 최적속도에 관한 연구)

  • Kim, Mi-Ok;Lee, Jung-Han;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.4
    • /
    • pp.86-92
    • /
    • 2009
  • A driver-vehicle model means the integrated dynamic model that is able to estimate the steering wheel angle from the driver's desired path based on the dynamic characteristics of the driver and vehicle. Autonomous driving robot for factory automation has individual four-wheels which are driven by electronic motors. In this paper, the dynamic characteristics of several four-wheel steering systems with the simultaneously steerable front and rear wheels are investigated and compared by means of the driver-vehicle model. A diver-vehicle model is proposed by using the PID control to velocity and trajectory of control autonomous driving robot. To determine the optimum speed of a autonomous driving robot, steady-state circle simulation is carried out with the ADAMS program and MATLAB control model.

A Study on Integrated Control System Design of Active Rear Wheel Steering and Yaw-Moment Control Systems (능동 후륜조타와 요우 모멘트의 협조제어에 관한 연구)

  • Park, J.H.;Pak, J.W.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.57-63
    • /
    • 2004
  • Conventionally, 2WS is used for vehicle steering, which can only steering front wheel. In case of trying to high speed lane change or cornering through this kind of vehicle equipped 2WS, it may occur much of Yaw moment. On the other hand, 4WS makes decreasing of Yawing Moment, outstandingly, so it is possible to support vehicle movement stable. And conventional ABS and TCS can only possible to control the longitudinal movement of braking equipment and drive which can only available to control of longitudinal direction. There after new braking system ESP was developed, which controls both of longitudinal and lateral, with adding of the function of controlling Active Yaw Moment. On this paper, we show about not only designing of improved braking and steering system through establishing of the integrated control system design of 4WS and ESP but also designing of the system contribute to precautious for advanced vehicle stability problem.

  • PDF

System Modeling and Simulation for an In-wheel Drive Type $6{\times}6$ Vehicle (인휠드라이브 타입 $6{\times}6$ 차량 플랫폼을 위한 시스템 모델링 및 시뮬레이션)

  • Lee, Jeong-Yeob;Suh, Seung-Whan;Shon, Woong-Hee;Kim, Chang-Jun;Han, Chang-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.1-11
    • /
    • 2011
  • The skid-steering method that applied a number of mobile robot currently is extremely effective in narrow area. But it contains several problems such as its natural properties, slip, occurred by different direction between vehicle's driving and wheel's rotary. Through this paper, suitable control algorithm of $6{\times}6$ skid steering wheeled vehicle and its driving methods are proposed by analyzing the behavior $6{\times}6$ skid-steered wheeled vehicle model designed by engineering analysis strategy. To do this, based on a behavior of designed driving system, required torque and other performance of in-wheel type motor system are considered, and finally control algorithm for each wheel is proposed and simulated using this model. To test the proposed vehicle system, driver model is designed using PID closed loop system and included in the total driving control algorithm. The Performance of designed vehicle model is verified by using DYC (Direct Yaw Control) cornering mode and slip mode control to follow the steering input which are essential to evaluate the driving performance of $6{\times}6$ vehicle. Proposed modeling strategy and control method will be implemented to the real $6{\times}6$ in-wheel drive type vehicle.

Development of Monolith Type Driving Pulley of Power Steering Hydraulic Pump (파워스티어링용 유압펌프의 일체형 풀리 개발)

  • Lee, C.T.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.4
    • /
    • pp.9-14
    • /
    • 2010
  • Most power steering systems work by using a hydraulic system to turn the vehicle's wheels. The pressure is usually provided by a hydraulic pump driven by the vehicle's engine. A double-acting hydraulic cylinder applies a force to the steering gear, which in turn applies a torque to the steering axis of the road wheels. The flow to the cylinder is controlled by valves operated by the steering wheel ; the more torque the driver applies to the steering wheel and the shaft it is attached to, the more fluid the valves allow through to the cylinder, and so the more force is applied to steer the wheels in the appropriate direction. Since the pumps employed are of the positive displacement type, the flow rate they deliver is directly proportional to the speed of the engine. And for a long time, the type of hydraulic pump pulley was boss welding type. But recently, monolith type driving pulley is widely used. Therefore in this paper we studied the safety of monolith type driving pulley to the extracting force and endurance by FEM analysis and experiments.

  • PDF

Steering System Design of Commercial Vehicle for Improving Pulling Phenomenon During Braking (상용차의 제동시 쏠림 개선을 위한 조향 연결점 설계)

  • Lee, Chang Hun;Lee, Dong Wook;Lee, Yong Su;Sohn, Jeong Hyun;Kim, Kwang Suk;Yoo, Wan Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.379-385
    • /
    • 2013
  • The tires, suspension type, and steering system can all cause pulling during braking. Among these, a drag link steering system and leaf-type suspension system are significant causes of vehicle pulling. In this study, the pulling problem is analyzed using the vehicle analysis program "ADAMS/CAR." The drag link and leaf spring behavior is analyzed to find the key reason for pulling. After this, the optimization program "Visual DOC" is used with "ADAMS/CAR" to find a steering link connection point to reduce pulling. After conducting this simulation, K&C (kinematic & compliance) test simulation with a modified connection point is conducted to determine whether the vehicle performance improves. Through a full braking simulation, it is verified that the pulling distance is reduced at braking.

Shifting and Steering Performance Analysis of Hydromechanical Continuous Variable Transmission (정유압기계식 무단변속기의 변속조향성능해석)

  • 강서익
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.2
    • /
    • pp.25-30
    • /
    • 1995
  • The shifting and steering performance of the tracked vehicle with the hydromechanical continuous variable transmission is analyzed. The simulation results are closely similar to both the vehicle test result, As a result of hydromechanical transmission simulation, power circulation in 2nd and 3rd range is maximum 142% And power flow of mechanical part has the relationship with the effeciency of the vehicle and transmission.

  • PDF

Development of the autnomous road vehicle (무인 자동차 개발 연구)

  • 최진욱;한민홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.88-93
    • /
    • 1993
  • This paper introduces an ARV(Autonomous Road Vehicle) system which can run on orads without help of a driver by detecting road boundaries through computer vision. This vehicle can also detect obstacles in front through sonar sensors and infrared sensors. This system largely consists of a handle steering module and a braking module. From road boundaries, the steering module determines handle turn angle. The braking module stops or decelerates to avoid collision depending on the relative speeds and distance to the obstacles detected by different sensors. This ARV system has been implemented in a small jeep and can run 30-40 km/h city traffic. In this paper, we illustrate the structure of the ARV systems and its operation principle.

  • PDF

Autonomous Tracking Control of Intelligent Vehicle using GPS Information (GPS 정보를 이용한 지능형 차량의 자율 경로추적 제어)

  • Chung, Byeung-Mook;Seok, Jin-Woo;Cho, Che-Seung;Lee, Jae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.10
    • /
    • pp.58-66
    • /
    • 2008
  • In the development of intelligent vehicles, path tracking of unmanned vehicle is a basis of autonomous driving and automatic navigation. It is very important to find the exact position of a vehicle for the path tracking, and it is possible to get the position information from GPS. However the information of GPS is not the current position but the past position because a vehicle is moving and GPS has a time delay. In this paper, therefore, the moving distance of a vehicle is estimated using a direction sensor and a velocity sensor to compensate the position error of GPS. In the steering control, optimal fuzzy rules for the path tracking can be found through the simulation of Simulink. Real driving experiments show the fuzzy rules are good for the steering control and the position error of GPS is well compensated by the proposed estimation method.

INTEGRATED CONTROL SYSTEM DESIGN OF ACTIVE FRONT WHEEL STEERING AND FOUR WHEEL TORQUE TO IMPROVE VEHICLE HANDLING AND STABILITY

  • Wu, J.Y.;Tang, H.J.;Li, S.Y.;Zheng, S.B.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.299-308
    • /
    • 2007
  • This study proposes a two-layer hierarchical control system that integrates active front wheel steering and four wheel braking torque control to improve vehicle handling performance and stability. The first layer is a robust model matching controller (R-MMC) based on linear matrix inequalities (LMIs), which optimizes an active front steering angle compensation and a desired yaw moment control, and calculates reference wheel slip for the target wheel according to the desired yaw moment. The second layer is a moving sliding mode controller (MSMC) that can track the reference wheel slip in a predetermined time by commanding proper braking torque on the target wheel to achieve the desired yaw moment. Since vehicle sideslip angle measurement is difficult to achieve in practice, a sliding mode observer (SMO) that requires only vehicle yaw rate as the measured input is also developed in this study. The performance and robustness of the SMO and the integrated control system are demonstrated through comprehensive computer simulations. Simulation results reveal the satisfactory tracking ability of the SMO, and the superior improved vehicle handling performance, stability and robustness of the integrated control vehicle.

Development of the Safety Steering System of Motor Vehicles Transmission (차량용 변속기의 조향안전화 제어장치의 개발)

  • 송창섭
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.2
    • /
    • pp.12-17
    • /
    • 1995
  • The operation of heavy tracked vehicle has the problems in the steering that made by misoperations. The protection device is applied to the vehicles. But that device is applied to the vehicles. But that device has the engine stop and over load condition problems. the steering safety system is developed on the basis of clutch slip that proved the durability in the dynamo test and field test. The steering safety system caused the performance improvement of vehicles when steering.

  • PDF