• 제목/요약/키워드: Vehicle Speed Estimation

검색결과 230건 처리시간 0.021초

FUZZY ESTIMATION OF VEHICLE SPEED USING AN ACCELEROMETER AND WHEEL SENSORS

  • HWANG J. K.;SONG C. K.
    • International Journal of Automotive Technology
    • /
    • 제6권4호
    • /
    • pp.359-365
    • /
    • 2005
  • The absolute longitudinal speed of a vehicle is estimated by using data from an accelerometer of the vehicle and wheel speed sensors of a standard 50-tooth antilock braking system. An intuitive solution to this problem is, 'When wheel slip is low, calculate the vehicle velocity from the wheel speeds; when wheel slip is high, calculate the vehicle speed by integrating signal of the accelerometer.' The speed estimator weighted with fuzzy logic is introduced to implement the above concept, which is formulated as an estimation method. And the method is improved through experiments by how to calculate speed from acceleration signal and slip ratios. It is verified experimentally to usefulness of estimation speed of a vehicle. And the experimental result shows that the estimated vehicle longitudinal speed has only a $6\%$ worst-case error during a hard braking maneuver lasting a few seconds.

제 5바퀴속도와 비교한 차량절대속도 추정 알고리즘 (Estimation of the Absolute Vehicle Speed using the Fifth Wheel)

  • 황진권;송철기
    • 한국정밀공학회지
    • /
    • 제20권3호
    • /
    • pp.58-65
    • /
    • 2003
  • Vehicle acceleration data from an accelerometer and wheel speed data from standard, 50-tooth antilock braking system wheel speed sensors are used to estimate the absolute longitudinal speed of a vehicle. We develop the four velocity estimation algorithms. And we compare experimental results with the Butterworth filtered speed from the fifth wheel and find that it is possible to estimate absolute longitudinal vehicle speed during a hard braking maneuver lasting three seconds.

신경망 모델을 이용한 차량 절대속도 추정 (Absolute Vehicle Speed Estimation using Neural Network Model)

  • 오경흡;송철기
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.51-58
    • /
    • 2002
  • Vehicle dynamics control systems are. complex and non-linear, so they have difficulties in developing a controller for the anti-lock braking systems and the auto-traction systems. Currently the fuzzy-logic technique to estimate the absolute vehicle speed is good results in normal conditions. But the estimation error in severe braking is discontented. In this paper, we estimate the absolute vehicle speed by using the wheel speed data from standard 50-tooth anti-lock braking system wheel speed sensors. Radial symmetric basis function of the neural network model is proposed to implement and estimate the absolute vehicle speed, and principal component analysis on input data is used. Ten algorithms are verified experimentally to estimate the absolute vehicle speed and one of those is perfectly shown to estimate the vehicle speed with a 4% error during a braking maneuver.

다중모델 칼만 필터를 이용한 무추력 비행체의 대기속도 추정 (Robust Airspeed Estimation of an Unpowered Gliding Vehicle by Using Multiple Model Kalman Filters)

  • 진재현;박정우;김부민;김병수;이은용
    • 제어로봇시스템학회논문지
    • /
    • 제15권8호
    • /
    • pp.859-866
    • /
    • 2009
  • The article discusses an issue of estimating the airspeed of an autonomous flying vehicle. Airspeed is the difference between ground speed and wind speed. It is desirable to know any two among the three speeds for navigation, guidance and control of an autonomous vehicle. For example, ground speed and position are used to guide a vehicle to a target point and wind speed and airspeed are used to maximize flight performance such as a gliding range. However, the target vehicle has not an airspeed sensor but a ground speed sensor (GPS/INS). So airspeed or wind speed has to be estimated. Here, airspeed is to be estimated. A vehicle's dynamics and its dynamic parameters are used to estimate airspeed with attitude and angular speed measurements. Kalman filter is used for the estimation. There are also two major sources arousing a robust estimation problem; wind speed and altitude. Wind speed and direction depend on weather conditions. Altitude changes as a vehicle glides down to the ground. For one reference altitude, multiple model Kalman filters are pre-designed based on several reference airspeeds. We call this group of filters as a cluster. Filters of a cluster are activated simultaneously and probabilities are calculated for each filter. The probability indicates how much a filter matches with measurements. The final airspeed estimate is calculated by summing all estimates multiplied by probabilities. As a vehicle glides down to the ground, other clusters that have been designed based on other reference altitudes are activated. Some numerical simulations verify that the proposed method is effective to estimate airspeed.

곡선 형태의 타이어 자국으로부터 차량사고시 속도추정 (Speed Estimation from Tire Marks for Vehicle Accident Reconstruction)

  • 김민석;이지훈;유완석;김기남
    • 한국자동차공학회논문집
    • /
    • 제16권5호
    • /
    • pp.128-133
    • /
    • 2008
  • In this paper, a new technique was suggested to estimate vehicle speed for the traffic accident reconstruction, and accident investigators can estimate initial vehicle speed based on this suggested technique. Turning tests with several vehicle speeds were executed and compared with the motion of the vehicle and the shape of the tire marks. A new method for estimating the coefficient of friction is suggested by using the longitudinal and lateral components of tire marks. And also, a speed calculation graph is suggested to estimate vehicle speed for traffic accident reconstruction.

VEHICLE SPEED ESTIMATION BASED ON KALMAN FILTERING OF ACCELEROMETER AND WHEEL SPEED MEASUREMENTS

  • HWANG J. K.;UCHANSKI M.;SONG C. K.
    • International Journal of Automotive Technology
    • /
    • 제6권5호
    • /
    • pp.475-481
    • /
    • 2005
  • This paper deals with the algorithm of estimating the longitudinal speed of a braking vehicle using measurements from an accelerometer and a standard wheel speed sensor. We evolve speed estimation algorithms of increasing complexity and accuracy on the basis of experimental tests. A final speed estimation algorithm based on a Kalman filtering is developed to reduce measurement noise of the wheel speed sensor, error of the tire radius, and accelerometer bias. This developed algorithm can give peak errors of less than 3 percent even when the accelerometer signal is significantly biased.

초고속 비행체 제어기법 설계를 위한 비행체 동압 추정 기법 연구 (A Research on the Dynamic Pressure Estimation for the Control Law Design of High Speed Vehicle)

  • 박정우;김익수;박익수
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.953-956
    • /
    • 2017
  • 본 논문에서는 비행 중에 추정되는 비행체 동압 정보의 일반적인 활용법에 대해 소개한다. 본 연구에서는 추정 정보의 정확성을 높여 비행의 신뢰성을 유지하기 위한 동압추정 기법을 제안하였다. 소개된 방법은 압축성 유동의 간단한 관계식을 통해 쉽게 확인할 수 있는 방법이지만, 초고속 비행체의 제어기법에 적용될 수 있는 높은 정확성을 가지는 양질의 동압정보를 제공하기 위한 방법론을 제안하고 그 활용성을 고찰하였다.

  • PDF

가속도 바이어스와 타이어반경 오차를 고려한 차량절대속도 추정 (Absolute Vehicle Speed Estimation considering Acceleration Bias and Tire Radius Error)

  • 황진권;송철기
    • 한국자동차공학회논문집
    • /
    • 제10권6호
    • /
    • pp.234-240
    • /
    • 2002
  • This paper treats the problem of estimating the longitudinal velocity of a braking vehicle using measurements from an accelerometer and wheel speed data from standard anti-lock braking wheel speed sensors. We develop and experimentally test three velocity estimation algorithms of increasing complexity. The algorithm that works the best gives peak errors of less than 3 percent even when the accelerometer signal is significantly biased.

Estimation of Vehicle Driving-Load with Application to Vehicle Intelligent Cruise Control

  • Kyongsu Yi;Lee, Sejin;Lee, Kyo-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제15권6호
    • /
    • pp.720-726
    • /
    • 2001
  • This paper describes a vehicle driving-load estimation method for application to vehicle Intelligent Cruise Control (ICC). Vehicle driving-load consists of aerodynamic force, rolling resistance, and gravitational force due to road slope and is unknown disturbance in a vehicle dynamic model. The vehicle driving-load has been estimated from engine and wheel speed measurements using a vehicle dynamic model a least square method. The estimated driving-load has been used in the adaptation of throttle/brake control law. The performance of the control law has been investigated via both simulation and vehicle tests. The simulation and test results show that the proposed control law can provide satisfactory vehicle-to-vehicle distance control performance for various driving situations.

  • PDF

철도차량 추진 제어를 위한 유도전동기 센서리스 구동 시스템에서 타행운전시 속도 추정 (Speed Estimation at Coasting Condition in a Sensorless Induction Motor Drive for Railway Vehicle Traction System)

  • 김상훈;박내춘
    • 산업기술연구
    • /
    • 제30권A호
    • /
    • pp.31-35
    • /
    • 2010
  • In this paper, a speed estimation method at coasting operation in an induction motor speed sensorless control for railway vehicle traction systems is presented. At coasting operation, there is no information obtaining rotor speed since all switches of an inverter are turned off. The inverter frequency should be synchronized with the rotor frequency for repowering at coasting condition. The proposed method injects DC current to the induction motor during a short time, then the flux angle and rotor speed needed for control can be estimated rapidly.

  • PDF