• Title/Summary/Keyword: Vehicle Seat

Search Result 271, Processing Time 0.045 seconds

Implementation of 3-point Seat Belt Model into ATB Program (ATB 프로그램에서 삼점식 좌석 벨트 모델의 구현)

  • Jeon, Kyu-Nam;Son, Kwon;Choi, Kyung-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.145-154
    • /
    • 2003
  • Occupant simulation models have been used to study trends or specific design changes in several typical crash situations. The ATB, Articulated Total Body, was developed and used to predict gross human body responses to vehicle crashes and pilot ejections. Since the ATB source code is open to public, the user can add their own defined modules and functions. The introduction of seat belts into cars significantly decreased the injury risk of passengers in frontal impacts. In this paper, a new seat belt model was developed and implemented into the ATB. For this purpose, a subroutine of the new seat belt was constructed. A force-deflection function was added to replace an existing function to consider energy absorption. The function includes hysteresis effects of the experiment data of the loading and unloading parts of the seat belt load-extension curve. Moreover, this belt model considers a slip between ellipsoid and belt segments. This paper attempted to validate the ATB program which includes the subroutine of new belt models comparing with the real car frontal crash experiments and MADYMO frontal models. The analysis focusses on the human movement and body accelerations.

The Optimization of Passenger Seat Belt Design for Female Passenger (여성 승객을 고려한 동승자석 안전벨트의 설계 최적화)

  • Kim, Yun-Bae;Kim, Hyung-Jun;Han, Jae-Nyung;Kim, Hyung-Il;Chae, Soo-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.10-15
    • /
    • 2012
  • The design of automobile occupant seat belt system has been studied by using MADYMO. Based on the FMVSS 208 (Federal Motor Vehicle Safety Standards 208) and the USNCAP (United States New Car Assessment Program) regulations, seat belt design parameters were chosen for the design improvement to the 5th percentile female dummy: limit force of load limiter, time to fire of shoulder belt, inlet length of shoulder belt, inlet length of lap belt. The design of experiment method was employed to optimize the design parameters of passenger seat belt. Range of injury probability due to the change of H-point position was estimated by the simulation.

A Experimental Study on the Performance of Climate Control Seats Using the Discharge Port of the Shape of Nozzle (노즐 형태의 토출구를 이용한 냉난방 시트 성능에 관한 실험적 연구)

  • Jung, Jung-Hoon;Kim, Sung-Chul;Won, Jong-Phil;Noh, Sang-Ho;Cho, Yong-Seok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.110-116
    • /
    • 2009
  • Research for climate control seats is being vigorously pursued because requests for passenger's thermal comfort are increasing. Recently, thermoelectric devices have been applied to automotive seats for both cooling and heating operations. The climate control seats using thermoelectric devices can rapidly control the air temperature passing through the devices and directly affect the thermal comfort of passengers. The performance characteristics of the climate control seats were analyzed by experiments for two different types of a leather covered seat and a mesh applied seat. Experimental results show that the cooling and heating performance for the mesh applied seat by using the discharge port of the shape of nozzle was improved significantly in comparison with that for the leather covered seat. The variation of temperature between the inlet air and the outlet air of the climate control seat for the enhanced mesh applied type was by $-3.5^{\circ}C$ at cooling mode, and was by $15.0^{\circ}C$ at heating mode, after about 30 minutes, respectively. Also, it is possible to provide rapid thermal comfort to passengers sitting on the seat in the vehicle cabin by using the proposed climate control seat.

A Semi-Active Suspension Using ER Fluids for a Commercial Vehicle Seat (ER 유체를 이용한 상용차 운전석의 반능동형 현가 장치)

  • 최정환;남무호;최승복;정재천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.394-399
    • /
    • 1997
  • This paper presents a new concept of a semi-active suspension system for a commercial vehicle seat. The proposed suspension system features an ER(electro-rheological) damper which can produce continuously tunable damping forces by control electric fields. A dynamic model of the ER damper is first achieved by incorporating Bingham property of the ER fluid, followed by the formulation of governing equations of motion for the suspension system. A sliding mode controller is then designed on the basis of the hyper-plane sliding mode scheme. The effectiveness of the proposed control system is evaluated by investigating control performance for vibration isolation.

  • PDF

A Study on the Emotional Adjective Extraction and Subjective Evaluation of Sound Quality for Vehicle Power Seat (차량용 파워 시트 작동음의 감성 어휘 추출 및 주관적 음질 평가에 관한 연구)

  • Kim, Sung-Yuk;Jang, Ju-Gwang;Ji, Hyo-Seong;Kim, Ok-Whan;Kim, Key-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.29-37
    • /
    • 2019
  • In this study, emotional adjectives about the operating sound quality of the vehicle power seat are constructed, and the effectiveness of the emotional adjectives are verified by evaluating the operating sound quality. First, emotional adjectives were collected from the literature related to the automobile field and other sound qualities. A questionnaire was made using these adjectives. The questionnaire was designed to be able to select all adjectives that could express the operating noise of the power seat slide adjuster by applying the multiple- response method. Next, a subjective sound quality evaluation was conducted using the emotional adjectives. In the evaluation, we first recorded the operating noise for two power seats. Second, the subjective sound quality evaluation was performed on the recorded operating noise using a loudspeaker. Finally, through a statistical analysis on the sound quality evaluation results, the relationship between the semantic space and the preference score was verified, and the validity of the emotional adjectives was verified.

Characteristics of Traffic Accidents on Highways: An Analysis Based on Patients Treated at a Regional Trauma Center

  • Lee, Sung Yong;Sun, Kyung Hoon;Park, Chan Yong;Kim, Tae Hoon
    • Journal of Trauma and Injury
    • /
    • v.34 no.4
    • /
    • pp.263-269
    • /
    • 2021
  • Purpose: There have been increasing concerns about serious traffic accidents on highways. The purpose of this study was to analyze factors affecting traffic accidents on highways and the severity of the resulting injuries. Methods: This retrospective study was conducted at a regional trauma center. We reviewed 594 patients who had been in 114 traffic accidents on highways from January 2018 to June 2020. We collected demographic data, clinical data, accident-related factors, and meteorological data (weather and temperature). Results: Environmental risk factors were found to be significantly associated with the incidence of traffic accidents on highways. Injury severity and the death rate were higher in sedans than in any other type of vehicle. Tunnels were the most common location of accidents, accounting for 47 accidents (41.2%) and 269 injured patients (45.3%). The injury severity of individuals riding in the driver's seat (front seat) was high, regardless of vehicle type. Three meteorological risk factors were found to be significantly associated with traffic accidents: rainy roads (odds ratio [OR] 2.08; 95% confidence interval [CI] 1.84-3.29; p=0.01), icy or snowy roads (OR 5.12; 95% CI 2.88-7.33; p<0.01), and foggy conditions (OR 2.94; 95% CI 2.15-4.03; p<0.05). Conclusions: The injury severity of patients was affected by seat position and type of vehicle, and the frequency of accident was affected by the location. The incidence of traffic accidents was strongly influenced by meteorological conditions (rain, snow/ice, and fog).

A Study on Characterizing a Healthy Driving Posture (건강한 운전 자세 특성 연구)

  • Kim, Darae;Choi, Hyungyun;Lee, Joungho;Ahn, Sungmin;Lee, Shiuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.121-129
    • /
    • 2013
  • To find a healthy driving posture, in this study, survey and empirical analysis given onto measurement of car-seat angle has been performed. Among 153 male respondents, those drivers who has minimum 5 year experience and 2 hours daily driving has been selected by a multiple screening process. They were further confirmed to have no discomfort history in any body region caused by the driving task. Final 44 people verified that their actual driving posture is not significantly different (p = 0.692) from healthy one they think. And their data, accordingly, the healthy driving postures are clustered based on the same seat-cushion angle, seat-back angle and trunk-thigh angle. Consequently, three seat-angles of the 44 subjects showed a significant difference only with their height information which is the most effecting factor on driving posture among the physical characteristics. That is a first result categorized healthy driving posture classified physical, if it were departmentalized into additional study, could be able to reflected a factor of "healthy" on car seat design.

Study on Vehicle Haptic-Seat for the Information Transfer to Driver (운전자 정보전달을 위한 차량용 햅틱시트 연구)

  • Oh, S.Y.;Kim, K.T.;Yu, C.H.;Han, K.S.;Kwon, T.K.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • In this study, the effect of the automotive haptic-seat technology which can transmit the driving information by the vibro-stimulus from the seat was investigated to overcome previous system's limitation relied on the visual and audial method and to help handicap driving. A prototype haptic seat covers with 30 coin-type motors and driver module were developed for this sake. A driving simulator on the 6-DOF motion-base was used for driving situation and we executed the seat vibro-stimulus test with 10 young participants who have normal tactile sense. The haptic recognition ratio by 30 locations was measured and analyzed in the result. The intensity of vibro-stimulus was adjusted by input voltage of motors (1.5V,2.5V,3.5V). All vibro-stimulus locations at 2.5V and 3.5V could be recognized by all participants and even in the lowest recognition ratio of 1.5V. The results showed that the seat vibration stimulus could be useful to transfer the drivers' information while driving.

  • PDF

Evaluation of Vehicle Body Stiffness by Measuring Local Vibration (위치별 진동 측정을 통한 차체강성평가)

  • Lee, Kyung Tae;Jun, Yong Du;Choi, Doo Seuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.195-200
    • /
    • 2013
  • Road loads data are indispensable in the evaluation of BSR (Buzz, Squeak, and Rattle) of automotive parts/modules. However, there are uncertainties on the best measurement locations for representative body motion and for seat systems. In the present study, we measure road loads at four different locations of a body. A-pillars on the driver and passenger sides and left and right frame fronts of the front passenger seat mountings are selected to study the acceleration behavior at different locations. The measurements are conducted with passenger cars driving local roads at 50km/hr. The measured time-acceleration data are then transformed into PSD (power spectral density) data to compare the characteristics of local accelerations. By defining the deviated acceleration components from rigid body motion, the stiffness of vehicle body could be simply expressed in a quantitative basis. Measured data from two different vehicles are presented to demonstrate their relative vehicle body stiffness.