• Title/Summary/Keyword: Vehicle Seat

Search Result 271, Processing Time 0.037 seconds

Robust Vehicle Occupant Detection based on RGB-Depth-Thermal Camera (다양한 환경에서 강건한 RGB-Depth-Thermal 카메라 기반의 차량 탑승자 점유 검출)

  • Song, Changho;Kim, Seung-Hun
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • Recently, the safety in vehicle also has become a hot topic as self-driving car is developed. In passive safety systems such as airbags and seat belts, the system is being changed into an active system that actively grasps the status and behavior of the passengers including the driver to mitigate the risk. Furthermore, it is expected that it will be possible to provide customized services such as seat deformation, air conditioning operation and D.W.D (Distraction While Driving) warning suitable for the passenger by using occupant information. In this paper, we propose robust vehicle occupant detection algorithm based on RGB-Depth-Thermal camera for obtaining the passengers information. The RGB-Depth-Thermal camera sensor system was configured to be robust against various environment. Also, one of the deep learning algorithms, OpenPose, was used for occupant detection. This algorithm is advantageous not only for RGB image but also for thermal image even using existing learned model. The algorithm will be supplemented to acquire high level information such as passenger attitude detection and face recognition mentioned in the introduction and provide customized active convenience service.

Ride comfort of the bridge-traffic-wind coupled system considering bridge surface deterioration

  • Liu, Yang;Yin, Xinfeng;Deng, Lu;Cai, C.S.
    • Wind and Structures
    • /
    • v.23 no.1
    • /
    • pp.19-43
    • /
    • 2016
  • In the present study, a new methodology is presented to study the ride comfort and bridge responses of a long-span bridge-traffic-wind coupled vibration system considering stochastic characteristics of traffic flow and bridge surface progressive deterioration. A three-dimensional vehicle model with 24 degrees-of-freedoms (DOFs) including a three-dimensional non-linear suspension seat model and the longitudinal vibration of the vehicle is firstly presented to study the ride comfort. An improved cellular automaton (CA) model considering the influence of the next-nearest neighbor vehicles and a progressive deterioration model for bridge surface roughness are firstly introduced. Based on the equivalent dynamic vehicle model approach, the bridge-traffic-wind coupled equations are established by combining the equations of motion of both the bridge and vehicles in traffic using the displacement relationship and interaction force relationship at the patch contact. The numerical simulations show that the proposed method can simulate rationally the ride comfort and bridge responses of the bridge-traffic-wind coupled system; and the vertical, lateral, and longitudinal vibrations of the driver seat model can affect significantly the driver's comfort, as expected.

Relationship between Comfort and Safety of Sitting Posture of a Driver during Vehicle Crash (차량 충돌시 운전자의 앉은 자세와 안전 사이의 관계)

  • Kim, Kwang-Hoon;Son, Kwon;Yoo, Wan-Suk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.102-109
    • /
    • 2003
  • Safety and comfort are importance concepts for designers of vehicle seats and instrument panels. There have been a lot of researches on comfortable sitting postures, however, relatively a few researchers have tried to find a desirable driving posture in consideration of both comfort and safety. This study investigates a relationship between comfort and safety of sitting posture of a driver. Since a seat is closely related to comfort, the angular data of comfortable sitting posture were obtained through the correlation between the seat and the driver. In order to acquire the data of safe sitting posture, computer simulations were performed for various seatback angles. Based on comparing and analyzing the data obtained, the optimal sitting posture is suggested for both comfort and safety aspects.

An Experimental Approach and Improvement of Buzz, Squeak and Rattle Noise from a Seat (차량 시트의 BSR Noise에 대한 시험적 고찰 및 개선)

  • Jeon, Jun-Sig;Kim, Byung-Hoon;Bang, Byung-Ju;Jang, Ik-Guen;Ji, Sung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.675-679
    • /
    • 2006
  • Today, the interior noise perceived by the occupants is an important factor in the design of automotive interior assemblies. Buzz, Squeak and Rattle Noises in a Seats are one of the major concerns mentioned above. In this study, the terms 'Buzz, squeak and rattle' were defined as the noise originating from structural vibrations in an assembly. And, the BSR noise of vehicle seat was investigated and the improvement of BSR noise level was confirmed though the structural treatment based on the structural analysis results from the modal and sound intensity of seat.

  • PDF

Nonlinearity of Biodynamic Response to Shock-Type Vertical Whole-Body Vibration (쇼크타입 수직방향 전신진동에 대한 생체동역학적 반응의 비선형성)

  • Ahn Se-Jin;Griffin Michael J.;Yoo Wan-Suk;Jeong, Weui-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.145-151
    • /
    • 2007
  • Impulsive excitation on vehicle produces shock-type vibration on the seat, which has major frequencies and damping ratios dependent on the characteristics of the suspension, the tire, the seat cushion and so on. The response of single degree of freedom model to a half-sine force input was considered as simple shock-type vibration signal. Quasi-apparent-mass for fifteen subjects was measured with the shock-type vibration generated on a rigid seat mounted on the simulator, so its nonlinearity was apparently found over 6.3 Hz according to the difference of magnitude of the shock.

A Study on the Structural Design of a Seat frame in Automotive Vehicles (승용차 시트프레임의 구조설계에 관한 연구)

  • 김홍건;조영태;최금호;이병휘
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.159-163
    • /
    • 1999
  • A seat frame structure in automotive vehicles made of polymer matrix composite to achieve weight reduction at low cost was developed. In order to design and manufacture the actual product, studies on material selection, and structural analyses were performed. Structural analyses were performed with a finite element analysis. Analyses were done for several cases suggested in various safety regulations of FMVSS(Federal Motor Vehicle Safety Standards). Each result was utilized to modify the actual shape to obtain a lighter, safer and more stable design. The final design was used to produce a sample bottom plate of the seat structure. Substitution of the material resulted in a weight reduction effect with equivalent strength, fatigue and impact characteristics. Furthermore, several effects from the replacement of the material besides weight reduction were also examined.

  • PDF

A Study on the Comparison for the Child Occupant Safety from Frontal Crash Test Protocol (정면충돌 시험방법에 따른 어린이 탑승객 충돌안전성 비교연구)

  • Kim, Siwoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.3
    • /
    • pp.33-38
    • /
    • 2016
  • Recently, development in vehicle safety could increase interest in children's safety in vehicle collisions. But the research of children safety in vehicle collisions is not being conducted as many as that of adult's. Especially the study for the vehicle crash was not much. This study focused on the comparison of child safety between test protocols to evaluate children's safety in crash test. Injuries of Q6 and Q10 dummy were evaluated using FFRB (Full frontal rigid barrier) test and 40% ODB (Offset deformable barrier) test with one model vehicle. Even though the limit number of test, the tendency of injury criteria of Q6 and Q10 dummy between the test protocols was not conformed but injury criteria of Q6 and Q10 were not same between FFRB and 40% ODB.

Ride Quality Analysis Using Seated Human Vibration Modeling (시트-인체 진동 모델링을 이용한 승차감 해석)

  • Kang, Ju Seok
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.194-202
    • /
    • 2015
  • In this paper, dynamic modeling with viscoelastic properties of a human body resting on a seat is presented to quantitatively analyze ride quality of passengers exposed to vertical vibrations. In describing the motions of a seated body, a 5 degree-of-freedom multibody model from the literature is investigated. The viscoelastic characteristics of seats used in railway vehicles are mathematically formulated with nonlinear stiffness characteristics and convolution integrals representing time delay terms. Transfer functions for the floor input are investigated and it is found that these are different in accordance with the input magnitude due to nonlinear characteristics of the seat. Measured floor input at the railway vehicle is used to analyze realistic human vibration characteristics. Frequency weighted RMS acceleration values are calculated and the effects of the seat design parameters on the frequency weighted RMS acceleration values are presented.

The Effectiveness for Consolidating Fitment of Safety Belt Reminder (좌석안전띠 미착용 경고장치의 의무 장착에 따른 효과분석)

  • Jang, Jeong Ah;Shim, Sojung;Kim, Young Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.6
    • /
    • pp.127-137
    • /
    • 2016
  • It is widely recognised that the safety-belt is one of the most important and effective vehicle safety features. Nevertheless, actual safety-belt wearing rates are low in Korea, especially rear seats. In Korea, rear seat safety-belt use can be as low as 20%. Consolidating fitment of Safety Belt Reminder(SBR) is one of means to improve belt wearing rates. In this paper, we use the effect of wearing seat belt model as Evans(1991) model. As a key parameter, intial wearing seat belt rates is studied and final wearing seat belt rates is used as scenario related a human compliance variables. In this study, benefit analysis is performed when the effective SBR is made mandatory for all passenger car seat. According to study results, when the fitment of SBR is made mandatory for all passenger car seats in Korea, 119 lives are expected to be saved annually with a 90% observance rate of the SBR. In the same condition, benefit-cost ratio will be 1.84.

Optimal Design of Vehicle Engine Mount (차량 엔진마운트 최적 설계)

  • Kang, Koo-Tae;Won, Kwang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.361-368
    • /
    • 2001
  • This paper introduces optimization techniques to design engine mount properties for passenger vehicle. The design targets are divided into three cases such as optimal positioning of powertrain modes, minimizing vibration of deriver's seat in idling and driving conditions. The proper models, mechanisms of vibration, and characteristics of optimization problems are discussed.

  • PDF