• Title/Summary/Keyword: Vehicle Safety Communication

Search Result 332, Processing Time 0.027 seconds

Optical Vehicle to Vehicle Communications for Autonomous Mirrorless Cars

  • Jin, Sung Yooun;Choi, Dongnyeok;Kim, Byung Wook
    • Journal of Multimedia Information System
    • /
    • v.5 no.2
    • /
    • pp.105-110
    • /
    • 2018
  • Autonomous cars require the integration of multiple communication systems for driving safety. Many carmakers unveil mirrorless concept cars aiming to replace rear and sideview mirrors in vehicles with camera monitoring systems, which eliminate blind spots and reduce risk. This paper presents optical vehicle-to-vehicle (V2V) communications for autonomous mirrorless cars. The flicker-free light emitting diode (LED) light sources, providing illumination and data transmission simultaneously, and a high speed camera are used as transmitters and a receiver in the OCC link, respectively. The rear side vehicle transmits both future action data and vehicle type data using a headlamp or daytime running light, and the front vehicle can receive OCC data from the camera that replaces side mirrors so as not to prevent accidents while driving. Experimental results showed that action and vehicle type information were sent by LED light sources successfully to the front vehicle's camera via the OCC link and proved that OCC-based V2V communications for mirrorless cars can be a viable solution to improve driving safety.

Design of In and Outdoor communication hub in Vehicular networks (차량 네트워크에서 내·외부 네트워크 연결을 위한 통신허브 설계)

  • Lee, Myung-Sub
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.187-194
    • /
    • 2012
  • Vehicular communication networking is one of the most important building blocks of Intelligent Transportation System(ITS). The vehicular communication network is a wireless communication system enabling vehicles to communicate with each other as well as with roadside base stations. Especially, Wi-Fi based vehicle-to-infrastructure(V2I) communication is an emerging solution to improve the safety, traffic efficiency, and comfort of passengers. In this paper, we proposed a new communication hub platform for vehicles, and explained vehicle communication technology in short. Through car simulation results, we show thar our proposed system reduces signaling interference.

Design and Implementation of Real-Time Vehicle Safety System based on Wireless Sensor Networks (무선 센서 네트워크 기반의 실시간 차량 안전 시스템 설계 및 구현)

  • Hong, YouSik;Oh, Sei-JIn;Kim, Cheonshik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.2
    • /
    • pp.57-65
    • /
    • 2008
  • Wireless sensor networks achieve environment monitoring and controlling through use of small devices of low cost and low power. Such network is comprised of several sensor nodes, each having a microprocessor, sensor, actuator and wired/wireless transceiver inside a small device. In this paper, we employ the sensor networks in order to design and implement a real-time vehicle safety system. Such system can inform the safe velocity in a specific weather condition to drivers in advance through analyzing the weather data collected from sensor networks. As a result, the drivers can prevent effectively accidents by controlling their car speed.

  • PDF

A Study of Head Up Display System for Next Generation Vehicle (차세대 자동차 통합스마트 모니터 시스템에 관한 연구)

  • Yun, Sung-Ha;Son, Hui-Bae;Rhee, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.439-444
    • /
    • 2011
  • In this paper, we implemented the intelligent smart monitor system for next generation which is most commonly viewed information in a vehicle from the instrument cluster, where speed, tachometer, fuel, engine temperature, fuel gauge, turn indicators and warning lights and provide the driver with an array of informations. Designed Smart HUD(Head-Up-Display) monitor system is composed TFT LCD, LCD Back light led, plane mirror, lens and controllers parts and it was assembled to intelligent integrated smart monitor system. Finally, we analyze intelligent integrated smart monitor system for driver safety vehicles and present the possibility to apply to smart intelligent HUD total monitor system for next generation.

Implementation of Smart Traffic Safety Systems using Fuzzy Theory

  • Han, Chang Pyoung;Hong, You Sik
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.71-82
    • /
    • 2020
  • Traffic accidents due to excessive speed frequently occur in places where traffic signal controllers are installed, places where sharp curves exist, or places where the traffic signal cycle does not match the current time. These traffic accidents cause economic loss due to the destruction of road facilities and structures, and cause a big problem of increasing the number of traffic accident deaths. When a traffic accident occurs, leaving a tire mark before or after a car crash, pre-collision speed of the car is calculated using the law of conservation of momentum or the skid mark formula. In the skip skid mark generated in ABS brake vehicles and the combshaped yaw mark generated by tire trace caused by lateral sliding, there is a difference of 30-40% in the reliability of the vehicle speed calculated by the smite mark. In this paper, we propose an algorithm that can improve the calculation reliability in vehicle speed by using skid marks in order to compensate for this problem. In addition, we present an intelligent speed calculation algorithm for traffic safety and a computer simulation in order to prevent traffic accidents by estimating the speed of a vehicle, using Skid marks, Yaw marks, and ABS brake characteristics and fuzzy rules.

A study on the Analysis of Radio Characteristics about Communication Mode in a Road (공용도로에서의 통신방식에 대한 전파특성 분석 연구)

  • Choi, Gi-Do;Lim, Ki-Taek;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2016
  • Vehicular communications is system which can be applied for transmission of various safety messages or Intelligent Transportation Systems(ITS) applications by combining vehicle/road technology with Information and Communication Technology(ICT). In recent years, a variety of ITS services are available such as driving information, road conditions, V2X messages as well as navigation and traffic jams notification. In general, vehicular communications can be used for vehicle-to-vehicle and vehicle-to-infrastructure communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environments. In this paper, WAVE communication standard based on the IEEE802.11p is explained and signal characteristics in WAVE communication is introduced. Also, The H/W and S/W characteristics in Road Side Station and On Board Equipment for the Vehicle to Everything communication are analyzed. Received Signal Strength which is power of receiving signal of communication equipment is measured in test road to estimate the real WAVE communication's performance. It is shown that the implemented WAVE communication technology is satisfactory to provide ITS services.

A Study on Low-Overhead Collision Warning Scheme using Vehicle-to-Vehicle Communications (차량 간 통신을 이용한 저비용 사고 위험 방지 기술에 관한 연구)

  • Lee, Ji-Hoon;Kim, Dae-Youb
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.10
    • /
    • pp.1221-1227
    • /
    • 2012
  • It is expected that the vehicle safety systems using vehicle-to-vehicle communication can reduce the possibility of vehicle collision and prevent the chain crash by promptly delivering the status of neighboring vehicles. Many IEEE 802.11 DCF based Flooding schemes have been proposed, but they may generally expose the problems that the transmission efficiency is sharply declined as the vehicle density has increased and then is related to the low possibility of the channel access. Therefore, this paper proposes a collision prevention scheme using adaptively controlling the frequency of the message exchanges based on the current status of neighboring vehicles. Moreover, it is shown from simulation that the proposed scheme provides the performance gains over the existing Flooding based scheme.

Determination Method of Centerpost Distance of Interior Permanent Magnet Synchronous Motor for Electric Vehicle Traction Motor considering Mechanical Safety

  • Kim, Sung-Jin;Kim, Yong-Jae;Jung, Sang-Yong;Suzuki, Kenji
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2013
  • With the active development of hybrid electric vehicle (HEV), the application of interior permanent magnet synchronous motor (IPMSM) has been expanded. As wide driving region of IPMSM for electric vehicle (EV) traction motor is required, many studies are conducted to improve characteristics of a motor in both low and high-speed driving regions. A motor in high-speed driving region generates (produces) large stress to the rotor. Thus, the rotor needs to be designed considering the mechanical safety. Therefore, in this paper, we conducted stress analysis and electromagnetic analysis to determine the centerpost's distance which is considered important during the design of IPMSM for EV traction motor in order to secure mechanical safety and satisfy specifications of output requirement.

Design of Hybrid V2X Communication Module for Cooperative Automated Driving (자율협력주행을 위한 하이브리드 V2X 통신모듈 설계)

  • Lim, Ki-taeg;Jin, Seong-keun;Kwak, Jae-min
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.3
    • /
    • pp.213-219
    • /
    • 2018
  • In this paper, we propose a design method and process for hardware and software of hybrid V2X communication module that supports both C-ITS communication protocol designed for vehicle environment and Legacy LTE communication technology. C-ITS is suitable for safety service applications due to its low latency characteristics, and Legacy LTE is a technology suitable for non-safety applications such as traffic information and infotainment due to high latency and high capacity. The hybrid V2X communication module supports multiple communication technologies of WAVE and LTE, in which WAVE supports multiple channels, so that it is designed to transmit road information such as LDM and positioning correction information to an autonomous vehicle in real time. The main design results presented in this paper will be applied to the implementation of future hybrid V2X communication terminals for vehicles.

Safety Index based on Driving Information (주행정보 기반 안전지수 산출에 관한 연구)

  • Daesub Yoon;Kyong-Ho Kim;Hyun Suk Kim
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2008.11a
    • /
    • pp.734-736
    • /
    • 2008
  • 차량의 정보를 실시간으로 수집할 수 있는 텔레매틱스 기술의 발전과 함께, 운전자의 주행정보를 실시간으로 분석함으로써, 운전자의 주행에 대한 안전지수를 산출하는 방법과 그에 따라서 고려되어야 할 요소에 대하여 논의하고자 한다. 본 논문에서는 안전지수 산출을 위해, 관련요소를 Static Information, Dynamic Information, Duration Information, Human Factor로 세분화 하고 각각의 요인에 대한 수집 방법 및 특성을 소개한다.