• Title/Summary/Keyword: Vehicle Routing

Search Result 332, Processing Time 0.032 seconds

Solving the Location Problem of Charging Station with Electric Vehicle Routing Problem (전기차량경로문제의 충전소 위치선정문제의 해법)

  • Gitae Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.217-224
    • /
    • 2022
  • Due to the issue of the sustainability in transportation area, the number of electric vehicles has significantly increased. Most automakers have decided or planned to manufacture the electric vehicles rather than carbon fueled vehicles. However, there are still some problems to figure out for the electric vehicles such as long charging time, driving ranges, supply of charging stations. Since the speed of growing the number of electric vehicles is faster than that of the number of charging stations, there are lack of supplies of charging stations for electric vehicles and imbalances of the location of the charging stations. Thus, the location problem of charging stations is one of important issues for the electric vehicles. Studies have conducted to find the optimal locations for the charging stations. Most studies have formulated the problem with deterministic or hierarchical models. In this paper, we have investigated the fluctuations of locations and the capacity of charging stations. We proposed a mathematical model for the location problem of charging stations with the vehicle routing problem. Numerical examples provide the strategy for the location routing problems of the electric vehicles.

On the Optimal Vehicle Routing of City-Wide PRT based on Synchronization (동기화 기반 City-Wide PRT의 최적경로설정 방안 연구)

  • Kim, Dong-Hee;Lee, Tae-Yun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1203-1208
    • /
    • 2010
  • Recently, there are environmental issues for sustainable transportation system to pursue the energy-efficient and environment-friendly public urban transit. These transportation system needs to offer demand-oriented high-quality service being on the same level with cab service for urban space. PRT(Personal Rapid Transit), small track-guided vehicle, is repeatedly mentioned as a possible alternative for the new urban public transportion system, but but there are not many researches on the operational optimal routing for PRT network. In this paper, the concept of PRT and general optimal routing methods are reviewed. And we suggest the optimal routing method for city-wide PRT network with multi-vehicles and stations, junctions and directional arcs. Futher research directions for PRT routing are presented.

  • PDF

Heuristic for Vehicle Routing Problem with Perishable Product Delivery (식품 배송의 특성을 고려한 차량경로문제의 발견적 해법)

  • Kang, Kyung Hwan;Lee, Young Hoon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.2
    • /
    • pp.265-272
    • /
    • 2007
  • The purpose of Vehicle Routing Problem (VRP) is to design the least costly (distance, time) routes for a fleet of identically capacitated vehicles to serve geographically scattered customers. There may be some restrictions such as the maximal capacity for each vehicle, maximal distance for each vehicle, time window to visit the specific customers, and so forth. This paper is concerned with VRP to minimize the sum of elapsed time from departure, where the elapsed time is defined as the time taken in a moving vehicle from the depot to each customer. It is important to control the time taken from departure in the delivery of perishable products or foods, whose freshness may deteriorate during the delivery time. An integer linear programming formulation is suggested and a heuristic for practical use is constructed. The heuristic is based on the set partitioning problem whose performances are compared with those of ILOG dispatcher. It is shown that the suggested heuristic gave good solutions within a short computation time by computational experiments.

An Efficient Vehicle Routing Heuristic for Various and Unsymmetric Forward and Backward Vehicle Moving Speed (왕복비대칭 가변이동속도에서의 효율적 배송차량경로 탐색해법 연구)

  • Moon, Geeju;Park, Sungmee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.36 no.3
    • /
    • pp.71-78
    • /
    • 2013
  • An efficient vehicle routing heuristic for different vehicle moving times for forward and backward between two points is studied in this research. Symmetric distance or moving times are assumed to move back and forth between two points in general, but it is not true in reality. Also, various moving speeds along time zones are considered such as the moving time differences between rush hours or not busy daytimes. To solve this type of extremely complicated combinatorial optimization problems, delivery zones are specified and delivery orders are determined for promising results on the first stage. Then delivery orders in each zone are determined to be connected with other zones for a tentative complete delivery route. Improvement steps are followed to get an effective delivery route for unsymmetric-time-varing vehicle moving speed problems. Performance evaluations are done to show the effectiveness of the suggested heuristic using computer programs specially designed and developed using C++.

Heuristic Model for Vehicle Routing Problem with Time Constrained Based on Genetic Algorithm (유전자알고리즘에 의한 시간제한을 가지는 차량경로모델)

  • Lee, Sang-Cheol;Yu, Jeong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.1
    • /
    • pp.221-227
    • /
    • 2008
  • A vehicle routing problem with time constraint is one of the important problems in distribution and transportation. The service of a customer must start and finish within a given time interval. Our method is based on an improved operators of genetic algorithm and the objective is to minimize the cost of servicing the set of customers without being tardy or exceeding the capacity or travel time of the vehicles. This research shows that a proposed method based on the improved genetic search can obtain good solutions to vehicle routing problems with time constrained compared with a high degree of efficiency other heuristics. For the computational purpose, we developed a GUI-type computer program according to the proposed method and the computational results show that the proposed method is very effective on a set of standard test problems, and can be potentially useful in solving the vehicle routing problems.

Improved VRP & GA-TSP Model for Multi-Logistics Center (복수물류센터에 대한 VRP 및 GA-TSP의 개선모델개발)

  • Lee, Sang-Cheol;Yu, Jeong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1279-1288
    • /
    • 2007
  • A vehicle routing problem with time constraint is one of the must important problem in distribution and logistics. In practice, the service for a customer must start and finish within a given delivery time. This study is concerned about the development of a model to optimize vehicle routing problem under the multi-logistics center problem. And we used a two-step approach with an improved genetic algorithm. In step one, a sector clustering model is developed by transfer the multi-logistics center problem to a single logistics center problem which is more easy to be solved. In step two, we developed a GA-TSP model with an improved genetic algorithm which can search a optimize vehicle routing with given time constraints. As a result, we developed a Network VRP computer programs according to the proposed solution VRP used ActiveX and distributed object technology.

  • PDF

A Study on the Solid Waste Collection Districting and Vehicle Routing-Scheduling for Waste Collection Using GIS (GIS를 이용한 생활폐기물의 수거권역설정과 수거차량의 순회경로계획에 관한 연구)

  • 이희연;임은선
    • Spatial Information Research
    • /
    • v.9 no.1
    • /
    • pp.15-30
    • /
    • 2001
  • Solid waste collection service is viewed as one of the most important public services in urban area. The purpose of this study is to apply the GIS based regional partitioning and arc routing methods for solid waste collection districting and vehicle routing-scheduling in order to provide waste collection service more efficiently. In this study, solid waste deposit sites are derived from the centroid of each building and the amount of solid waste is deduced based on the number of households and establishments. The regional partitioning procedure is performed based on waste collection zones which are constructed from waste deposit sites. The result of this study shows that solid waste collection districts which are delineated by regional partitioning method are able to increase efficiencies and cut costs in performing solid waste collection services. Also the output of vehicle-scheduling from the analysis of arc routing may provide more efficiently and quickly manage the scheduling of the residential solid waste collection routes, reducing costs with minimal deadheading costs. Therefore, the application of GIS based on regional partitioning and arc routing methods would be very useful to construct a solid waste management system by supplying the important and flexible informations for solid waste collection districts and vehicle routing-scheduling for waste collection.

  • PDF

A Combined Location and Vehicle Routing Problem (입지선정 및 차량경로문제)

  • 강인선
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.37
    • /
    • pp.263-269
    • /
    • 1996
  • The cost and customer service level of a logistics system depend primarily on the system design of the physical supply system and physical distribution system. The study presents the mathematical model and a huristic solution method of a combined location - vehicle routing problem(LVRP). In LVRP the objective is to determine the number and location of the distribution centers, the allocation of customers to distribution centers, and the vehicle delivery routes, so as to minimize the logistics total cost and satisfy the customer.

  • PDF

Simultaneous Consideration of Delivery and Pick-Up in Vehicle Routing Problem (배달과 회수를 고려한 차량 경로 문제)

  • 김내헌
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.16 no.28
    • /
    • pp.195-202
    • /
    • 1993
  • This paper considers the vehicle routing problem taking account of not only delivery but pick-up at the same time. A mathematical formulation is presented for finding the route which satisfies all the demands of customers and enables picking up most containers without exceeding the capacity of the vehicle. A table comparing traveling distance and the pick-up amount is provided by using heuristic method, which will be of help to the decision makers.

  • PDF

A Hybrid Genetic Algorithm for Vehicle Routing Problem which Considers Traffic Situations and Stochastic Demands (교통상황과 확률적 수요를 고려한 차량경로문제의 Hybrid 유전자 알고리즘)

  • Kim, Gi-Tae;Jeon, Geon-Uk
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.5
    • /
    • pp.107-116
    • /
    • 2010
  • The vehicle travel time between locations in a downtown is greatly influenced by both complex road conditions and traffic situation that changes real time according to various external variables. The customer's demands also stochastically change by time period. Most vehicle routing problems suggest a vehicle route considering travel distance, average vehicle speed, and deterministic demand; however, they do not consider the dynamic external environment, including items such as traffic conditions and stochastic demand. A realistic vehicle routing problem which considers traffic (smooth, delaying, and stagnating) and stochastic demands is suggested in this study. A mathematical programming model and hybrid genetic algorithm are suggested to minimize the total travel time. By comparing the results considering traffic and stochastic demands, the suggested algorithm gives a better solution than existing algorithms.