• 제목/요약/키워드: Vehicle Pulls

검색결과 11건 처리시간 0.022초

차량 쏠림 개선을 위한 전륜 현가시스템의 기하공차 최적화 (Optimization of Geometric Dimension & Tolerance Parameters of Front Suspension System for Vehicle Pulls Improvement)

  • 김용석;장동영
    • 대한기계학회논문집A
    • /
    • 제33권9호
    • /
    • pp.903-912
    • /
    • 2009
  • This study is focused on simulation-based dimensional tolerance optimization process (DTOP) to minimize vehicle pulls by reduction of dimensional variation in front suspension system. In previous studies, the effect of tires and wheel alignment sensitivity have mainly been investigated to eliminate vehicle pulls in nominal design condition without allocating optimal tolerance level for selected components, among various factors regarding vehicle pulls such as vehicle design parameters, vehicle weight balance, tires, and environmental factors. Unfortunately, there are wide variations in the real vehicle, and these have impacted actual vehicle pulls, especially wheel alignment effects from suspension geometry variation has not been considered in the previous studies. In the tolerance design of suspension, tolerance variables with the uncertainty such as parts dimensional variation, assembly process, datum position and direction, and assembly tool tolerance has a great influence on the variation of the suspension dimensional performances. This study introduces total vehicle pull prediction model in considering major key factors for vehicle pull sensitivity. The Monte Carlo-based tolerance analysis model using Taguchi robust method is developed to optimize dimensional tolerance parameters, satisfying on the target variation level.

Prediction of Tractive Performance of Tracked Vehicles Using a Computer Simulation Model

  • Park, W.Y.;Chang, Y.C.;Lee, K.S.
    • Agricultural and Biosystems Engineering
    • /
    • 제4권1호
    • /
    • pp.34-38
    • /
    • 2003
  • A mathematical model was developed for estimating the mechanical interrelation between characteristics of soil and main design factors of a tracked vehicle, and predicting the tractive performance of the tracked vehicle. Based on the mathematical model, a computer simulation program (TPPMTV) was developed in the study. The model considered the continuous change in tension for the whole track of a tracked vehicle, the analysis of shape and tension of the track segment between sprocket and first roadwheel, and the side thrust on both sides of grouser by the active earth pressure theory in predicting the tractive performance of a tracked vehicle. Also, the model contained not only sinkage depth of the track but the pressure distribution under the track in analyzing the side thrust. The effectiveness of the developed model was verified by performing the draw bar pull tests with a tracked vehicle reconstructed for test in loam soil with moisture content of 18.92%. The predicted drawbar pulls by the model were well matched to the measured ones. Such results implied that the model developed in the study could estimate the drawbar pulls well at various soil conditions, and would be very useful as a simulation tool for designing a tracked vehicle and predicting its tractive performance.

  • PDF

연성 궤도형차량의 견인성능 예측 모델의 실험적 검증 (Experimental Validation of Tractive Performance Prediction Model for Flexible Tracked Vehicles)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • 제24권2호
    • /
    • pp.89-98
    • /
    • 1999
  • In this paper, to estimate the effectiveness of the tractive performance prediction model(TPPMTV98) which was developed to predict the tractive performance of flexible tracked vehicles in previous paper, the experimental substantiation of the TPPMTV98 were conducted with the reconstructed tracked vehicle on the loam soil with the moisture content of 18.92%, and bevameter was constructed in order to measure soil properties in situ. The drawbar pulls measure were compared with predicted ones. As a result, the predicted drawbar pulls by the TPPMTV98 were well matched to the measured ones. Such results implied that the TPPMTV98 could well estimate the drawbar pulls at given soil conditions, and would be very useful as a simulation tool for designing a flexible tracked vehicle and predicting its tractive performance.

  • PDF

로외에서 운용되는 궤도형차량의 견인성능에 관한 이론적 예측과 실험적 검증 (Theoretical Prediction and Experimental Substantiation of Tractive performance of Off-Road Tracked Vehicles)

  • 박원엽;이규승
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.248-257
    • /
    • 1999
  • A mathematical model was developed to investigate the mechanical interrelation between soil characteristics and main design factors of a tracked vehicles , and predict the tractive performance of the tracked vehicles. Based on the mathematical model, a computer simulation program(TPPMTV98) was developed in this study. The effectiveness of the developed model was verified by comparing the predicted drawbar pulls using TPPMTV98 with measured ones from traction tests with a tracked vehicle reconstructed for test in loam soil with moisture content of 18.92%(d.b). The drawbar pulls measured by the TPPMTV98 were well matched to the measured ones. Such results implied that the model developed in this study could estimate the drawbar pulls well at various soil conditions , and would be very useful as a simulation tool for designing a tracked vehicle and predicting its tractive performance.

  • PDF

로외에서 운용되는 휠형차량의 견인성능 예측 (Prediction of Tractive Performance of Off-Road Wheeled Vehicles)

  • 박원엽;이규승
    • 한국자동차공학회논문집
    • /
    • 제8권5호
    • /
    • pp.188-195
    • /
    • 2000
  • This study was conducted to develop the mathematical model and the computer simulation program(TPPMWV) for predicting the tractive performance of off-road wheeled vehicles operated on various soil conditions. The model takes into account main design parameters of a wheeled vehicle, including the radius and width of front and rear tires, the weight of vehicle, wheelbase and driving type(4WD, 2WD). Soil characteristics, such as the peressure-sinkage and shearing characteristics and the response to repetitive loading, are also taken into consideration. The effectiveness of the developed model was verified by comparing the predicted drawbar pulls using TPPMWV with measured ones obtained by field tests for two different driving types of wheeled vehicle. As a results, the drawbar pulls predicted by the TPPMWV were well matched to the measured ones within the absolute errors of 5.25%(4WD) AND 9.42%(2WD)for two different driving types, respectively.

  • PDF

휠형차량의 연약지 견인성능 예측 (Prdiction of Tractive Performance of Wheeled Vehicles on Soft Terrains)

  • 박원엽;이규승
    • Journal of Biosystems Engineering
    • /
    • 제25권5호
    • /
    • pp.359-368
    • /
    • 2000
  • In this paper, mathematical model was developed for predicting the tractive performance of off-road wheeled vehicles operated on soft terrains. Based on the mathematical model, a computer simulation program(TPPMWV) was developed. The model takes into account main design parameters of wheeled vehicle, including radius and width of front and rear tire, weight of vehicle, wheelbase and driving type(4WD, 2WD). Soil characteristics, such as the peressure-sinkage and shearing characteristics and the response to repetitive loading and slip-sinkage effect, are also taken into consideration. The effectiveness of the developed model was verified by comparing the predicted drawbar pulls using TPPMWV with measured ones obtained by field tests for two different driving types of wheeled vehicle. As a results, the drawbar pulls predicted by the TPPMWV were well matched to the measured ones within the absolute errors of 3.916%(4WD) and 13.31%(2WD) for two different driving types, respectively.

  • PDF

수중운동체 입수 초기의 불안정 거동에 대한 제어기 설계 및 성능평가 (Design and Performance Evaluation of Controller for Unstable Motion of Underwater Vehicle after Water Entry)

  • 박영일;류동기;김삼수;이만형
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.166-175
    • /
    • 1999
  • This paper describes a design and performance evaluation of robust controller which overrides unstable motion and pulls out quickly after water entry of underwater vehicle dropped from aircraft or surface ship. We use 6-DOF equation for model of motions and assume parameter uncertainty to reflect the difference of real motion from modelled motion equation. we represent a nonlinear system with uncertainty as Takagi and Sugeno's(T-S) fuzzy models and design controller stabilizing them. The fuzzy controller utilizes the concept of so-called parallel distributed compensation (PDC). Finally, we confirm stability and performance of the controller through computer simulation and hardware in the loop simulation (HILS).

  • PDF

유럽 충돌안전도 규격 적용 철도차량 차체 해석 기술 개발 (Railway carbody analysis technology development for application Europe crashworthiness standard.)

  • 정지호;박형순;박근수;이장욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.231-237
    • /
    • 2006
  • Recently railroad industry pulls a new interest with stability, fixed time characteristic, low environment pollution characteristic and mass transportation characteristic. With industrial development railroad it joins in, The many research and regulation production are coming to do. Specially like this activities are coming to be advanced actively from North America and Europe. From viewpoint of railway car production company, The vehicle production that a suitable Europe standard is essentiality for find a Europe market that The whole vehicle consuming hold it does a most big specific gravity. From this study, developed finite element model for analysis technology about crashworthiness of inside GM/RT 2100 standard and analyzed crash results.

  • PDF

차량에서 실시간 동반경 및 슬립율 측정 (The Real Time Measurement of Dynamic Radius and Slip Ratio at the Vehicle)

  • 이동규;박진일;이종화
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.89-94
    • /
    • 2006
  • The tire delivering power generated from engine to the ground pulls a vehicle to move. Radius of tires is changeable due to elasticity that depends on the speed of vehicle and traction force. The main objectives on this study are real time measurement of dynamic radius and slip ratio according to the speed and traction force. The dynamic radius is proportional to speed and traction force. According to measurement, the dynamic radius is increased about 3mm under 100km/h compared to stop. It is also increased about 1.5mm when a traction force is supplied as much as 4kN compared to no load state at low speed. There is no strong relationship between slip ratio and vehicle speed. The slip ratio is measured up to 4% under WOT at first stage gear. Through this research, the method of measuring dynamic radius and slip ratio is set up and is expected to be applied to the measurement of traction force in chassis dynamometer or accelerating and climbing ability.

Development Study of A Precooled Turbojet Engine for Flight Demonstration

  • Sato, Tetsuya;Taguchi, Hideyuki;Kobayashi, Hiroaiki;Kojima, Takayuki;Fukiba, Katsuyoshi;Masaki, Daisaku;Okai, Keiichi;Fujita, Kazuhisa;Hongoh, Motoyuki;Sawai, Shujiro
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.109-114
    • /
    • 2008
  • This paper presents the development status of a subscale precooled turbojet engine "S-engine" for the hypersonic cruiser and space place. S-engine employs the precooled-cycle using liquid hydrogen as fuel and coolant. It has $23cm{\times}23cm$ of rectangular cross section, 2.6 m of the overall length and about 100 kg of the target weight employing composite materials for a variable-geometry rectangular air-intake and nozzle. The design thrust and specific impulse at sea-level-static(SLS) are 1.2 kN and 2,000 sec respectively. After the system design and component tests, a prototype engine made of metal was manufactured and provided for the system firing test using gaseous hydrogen in March 2007. The core engine performance could be verified in this test. The second firing test using liquid hydrogen was conducted in October 2007. The engine, fuel supplying system and control system for the next flight test were used in this test. We verified the engine start-up sequence, compressor-turbine matching and performance of system and components. A flight test of S-engine is to be conducted by the Balloon-based Operation Vehicle(BOV) at Taiki town in Hokkaido in October 2008. The vehicle is about 5 m in length, 0.55 m in diameter and 500 kg in weight. The vehicle is dropped from an altitude of 40 km by a high-altitude observation balloon. After 40 second free-fall, the vehicle pulls up and S-engine operates for 60 seconds up to Mach 2. High altitude tests of the engine components corresponding to the BOV flight condition are also conducted.

  • PDF