• Title/Summary/Keyword: Vehicle Parts

Search Result 868, Processing Time 0.035 seconds

A Convergence Study through Strength Analysis of Side Bolster (사이드 볼스터의 강도 해석을 통한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.169-174
    • /
    • 2020
  • Side bolster is a part of the vehicle seat that holds the passenger's body from the side to make it more stable when the passenger is seated in the seat. In this study, the structural and fatigue analyses of the side bolsters at a car seat were carried out with two models of A and B. The heavily loaded parts, the damage by fatigue at driving a car and the difference of durability due to the structure were examined and the distributions of stress and deformation, and the fatigue lives were seen. Also, the strength and durability were examined. This study result is thought to be devoted to decrease the fatigue damage and increase the fatigue life and durability according to the design of bolster. This result is able to improve the product by applying the design of automotive side bolster practically. And it is thought to be the advantage to apply this study result to the convergence research with esthetic sense.

Implementation of FlexRay Systems for Vehicle Appliacations (차량 내 통신을 위한 FlexRay 시스템 구현)

  • Jeon, Chang-Ha;Lee, Jae-Kyung;Jang, In-Gul;Chung, Jin-Gyun
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.182-184
    • /
    • 2009
  • FlexRay is a new standard of network communication system which provides a high speed serial communication, time triggered bus and fault tolerant communication between electronic devices for future automotive and ship applications. FlexRay communication controller(CC) is the core of the FlexRay protocol specification. In this paper, we first design the FlexRay CC protocol specification and function parts using SDL(Specification and Description Language). Then, the system is re-designed using Verilog HDL based on the SDL source. The FlexRay CC system was synthesized using Samsung $0.35{\mu}m$ technology. It is shown that the designed system can operate in the frequency range above 80 MHz. In addition, to show the validity of the designed FlexRay system, the FlexRay system is combined with sound source localization system in Robot applications. The combined system is implemented using ALTERA Excalibur ARM EPXA4F672C3. It is shown that the implemented system operates successfully.

  • PDF

Evaluation of Adhesiveness with Current Flow Time in the Indirect Heating of an Asphalt Pad using Joule Heating (줄 히팅을 이용한 아스팔트패드 간접가열에 있어서 통전시간별 융착성 평가)

  • Bae, Ki-Man;Choi, Han-Suk;Oh, Bo-Ra-Mi;Baek, Jong-Jin;Park, Seong-Hwan;Kang, Myungchang;Lee, Jae-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.8
    • /
    • pp.104-109
    • /
    • 2020
  • Recently, vibration and noise have become an important issue in the auto industry. Asphalt vibration damping pads are used to reduce the noise and vibration of automobile bodies, and asphalt is used for many mass-produced parts due to its simple attachment process and low processing costs. In this study, the self-adhesion of asphalt pads using Joule heating was evaluated. To create the asphalt pad for the experiment, the asphalt pad was molded into a specific thickness by using SGACC material and rubber used in the vehicle body as a main component and a modified resin and filler. The SGACC material was 200 mm in length, 200 mm in width, and 0.7 mm in thickness. The asphalt pad was 200 mm in length, 100 mm in width, and 3 mm in thickness. The equipment was composed of a TR (Transformer) DC254kVA and a TC (Time controller) for a current of up to 20,000 A. The current for the Joule heating was set to 7.0 kA and a 3/1 cycle, for which the adhesion of the asphalt pad over the current flow time was evaluated.

Development and Validation of Wheel Loader Simulation Model (휠로더 시뮬레이션 모델의 개발과 검증)

  • Oh, Kwangseok;Yun, Seungjae;Kim, Hakgu;Ko, Kyungeun;Yi, Kyongsu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.601-607
    • /
    • 2013
  • This paper presents the development and validation of a wheel loader simulation model. The objective of doing so is to evaluate the performance of the wheel loader and improve its overall performance using Matlab/Simulink. The wheel loader simulation model consists of 4 parts: mechanical/hydraulic powertrain model and vehicle/working dynamic model. An integrated simulation model is required to evaluate and improve the performance of the wheel loader. It is expected that this model will be applied to fuel economizing, improving the pace of operation by using the hybrid system, and the intelligent wheel loader. The performance of the proposed simulation model has been validated by using Matlab/Simulink to compare the driving and the working experimental data.

Development of Traffic Prediction and Optimal Traffic Control System for Highway based on Cell Transmission Model in Cloud Environment (Cell Transmission Model 시뮬레이션을 기반으로 한 클라우드 환경 아래에서의 고속도로 교통 예측 및 최적 제어 시스템 개발)

  • Tak, Se-hyun;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.4
    • /
    • pp.68-80
    • /
    • 2016
  • This study proposes the traffic prediction and optimal traffic control system based on cell transmission model and genetic algorithm in cloud environment. The proposed prediction and control system consists of four parts. 1) Data preprocessing module detects and imputes the corrupted data and missing data points. 2) Data-driven traffic prediction module predicts the future traffic state using Multi-level K-Nearest Neighbor (MK-NN) Algorithm with stored historical data in SQL database. 3) Online traffic simulation module simulates the future traffic state in various situations including accident, road work, and extreme weather condition with predicted traffic data by MK-NN. 4) Optimal road control module produces the control strategy for large road network with cell transmission model and genetic algorithm. The results show that proposed system can effectively reduce the Vehicle Hours Traveled upto 60%.

Analysis for the Cross Rail Design and the Zig-Zag Motional Error in Gantry Type Machine (Gantry Type 대형 공작기계의 Cross Rail 설계 및 좌우 이송 편차에 관한 해석)

  • Lee, Eung-Suk;Lee, Min-Ki;Park, Jong-Bum;Kim, Nam-Sung;Ham, Jun-Sung;Hong, Jong-Seung;Kim, Tae-Sung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.2
    • /
    • pp.156-160
    • /
    • 2012
  • Recently, the demands of the large scale machine tools gradually increase to machine the large parts, such as large scale crankshaft, yaw and pitch bearings for the wind power generator and the vehicle or aircraft components. But the high technology is necessary in order to develop the huge machine tools. Furthermore, the global market of it has been monopolized by a few companies. So, we need to develop the large scale machine tools and study its core technology to rush into the increasing market. In this study, we carried out the researches for the important core technology of a multi-tasking, machine tool; a large scale 5-axis machine tool of gantry type for multi-task machining. This study is focused on the design of large size gantry type multi-axis machine. In the case of large size of machine the cross rail deflection in the X-axis is significant. To reduce the deflection due to the eccentric spindle head, a special hollow type design in the cross rail with outside ram is adapted in this study. Also, the Zig-Zag motion in the Y-axis is inevitable with the gantry geometry, which is by the un-balancing, different motion at the left and the right columns moving. We tried to reduce the influence of Zig-Zag motion using FEM with different loading conditions at the left and the right side column.

Stable and Precise Multi-Lane Detection Algorithm Using Lidar in Challenging Highway Scenario (어려운 고속도로 환경에서 Lidar를 이용한 안정적이고 정확한 다중 차선 인식 알고리즘)

  • Lee, Hanseul;Seo, Seung-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.158-164
    • /
    • 2015
  • Lane detection is one of the key parts among autonomous vehicle technologies because lane keeping and path planning are based on lane detection. Camera is used for lane detection but there are severe limitations such as narrow field of view and effect of illumination. On the other hands, Lidar sensor has the merits of having large field of view and being little influenced by illumination because it uses intensity information. Existing researches that use methods such as Hough transform, histogram hardly handle multiple lanes in the co-occuring situation of lanes and road marking. In this paper, we propose a method based on RANSAC and regularization which provides a stable and precise detection result in the co-occuring situation of lanes and road marking in highway scenarios. This is performed by precise lane point extraction using circular model RANSAC and regularization aided least square fitting. Through quantitative evaluation, we verify that the proposed algorithm is capable of multi lane detection with high accuracy in real-time on our own acquired road data.

Property Prediction of Rupture Disc by Using Finite Element Analysis (유한요소해석을 이용한 파열판의 특성 예측)

  • Han, Chang-Yong;Lee, Seong-Beom;Jung, Hee-Suk;Kim, Tae-Gu
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.1-6
    • /
    • 2009
  • High pressure devices are used widely. Interest in rupture disc to people is the increases in protect of facilities and people. A rupture disc consists of mainly three parts: holder, plate and vacuum support. Rupture discs are rusted or destroyed by diverse environments. Rupture discs are made from STS 316L stainless steel because of its high corrosion resistance and yield strength. In this study, modeling of a rupture disc by CATIA V5 and finite element analysis by ANSYS were carried out. The finite element analysis results executed to predict properties of the rupture disc with thickness and height.

  • PDF

Composite Pressure Vessel for Natural Gas Vehicle by Filament Winding (필라멘트 와인딩 공정에 의한 천연가스 차량용 복합재료 압력용기)

  • 김병선;김병하;김진봉
    • Composites Research
    • /
    • v.17 no.5
    • /
    • pp.1-6
    • /
    • 2004
  • Composite pressure vessels with HDPE (high density polyethlyne) liner with metal boss at each end were developed by Filament Winding Process. The vessel is composed of a dome-shaped part at each end and a cylinder-shaped part at the middle of the vessel. The environmental tests carried out for possible vessel materials such as High Density Polyethlyn (HDPE), resins and reinforcing fibers up to a year showed no significant damages. The boss was designed to minimize the gas leak which was verified by FEM analysis. Most ideal fiber tension was obtained by experimental method and the fiber volume fraction, $\textrm{V}_{f}$, obtained by image analyzer were 55.4 % in cylinder and 55.6 % in dome parts, respectively. Winding pattern is programmed to control the composite thickness in the dome areas such that the failure of the vessel may occur in the cylinder. During the cure, the vessel was rotated and a constant internal pressure of 0.62 bar was applied. From this, the vessel's burst pressure is improved by 28 %. The burst and fatigue tests for under-wound and fully wound vessel showed satisfactory results.

Virtual Prototyping of Automated System for Adjustable Row Spacing of Hydroponic Gullies in Multilayer Plant Factory

  • Ashtiani-Araghi, Alireza;Lee, Chungu;Cho, Seong-In;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • v.40 no.1
    • /
    • pp.35-46
    • /
    • 2015
  • Purpose: To present a flexible and accurate autonomous solution for creating any desired row spacing value between the hydroponic gullies in multilayer growing units, and evaluate the capabilities and performance of the relevant automated system through the use of virtual prototyping technique. Methods: To build the virtual prototype of the system, CAD models of its different parts, including an autonomous vehicle and the mechanical mechanisms embedded in the multilayer growing unit, were developed and imported into the RecurDyn simulation software. In order to implement the automated row spacing operation, three spacing modes with different loading cycles and working steps were defined, and the operation of the system was simulated to obtain the target row spacing values specified for each of these modes. Results: Motion profiles related to the horizontal displacement of: 1) the lower and upper sliding bars installed in the cultivation layers, and 2) the hydroponic gullies, during the simulation of the system operation, were generated and analyzed. No deviation from the specified target spacing values was observed at the end of simulations for all spacing modes. Conclusions: The results of the motion analysis obtained by simulating the system operation confirm the effectiveness of the control scheme proposed for automated row spacing of gullies. It was also found that proper sequencing of the loading cycles and the precision of the working strokes of the upper bars are the critical factors for establishing a certain row spacing value. Based on the simulation results, precise control of the back and forth motions of the upper bars is highly necessary for sound operation of the real system.