• Title/Summary/Keyword: Vehicle Network

검색결과 1,530건 처리시간 0.031초

A Vehicle SoC Fault Diagnosis Technique using FlexRay Protocol

  • Kang, Seung-Yeop;Jung, Ji-Hun;Park, Sung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • 제21권1호
    • /
    • pp.39-47
    • /
    • 2016
  • In this paper, we propose vehicle SoC fault diagnosis platform using FlexRay protocol in order to detect the faults of semiconductor control chip even after vehicle production. Before FlexRay protocol by sending NFI (Null Frame Indicator) bit among the header segment and a specific identifier in the payload segment of FlexRay frame, this technique can be distinguishable from normal mode and test mode. By using this technique, it is possible to detect the faults such as performance degradation of vehicle network system caused by the aging or several problems of vehicle semiconductor chip. Also high reliability and safety of vehicle can be maintained by using structural test for vehicle SoC fault detection.

A Study on Recognition of Automobile Type and Plate Number Using Neural Network (신경회로망을 이용한 자동차 종류 및 차량번호 자동인식에 관한 연구)

  • Bae, Youn-Oh;Lee, Young-Jin;Chang, Yong-Hoon;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1107-1109
    • /
    • 1996
  • In this paper, we discuss the automatic recognition system of vehicle types and licence plate numbers using artificial neural networks, which will be used as vehicle identifier. We confine to expose the vehicle licence number for violating bus lane and stolen cars. Therefore, the vehicle height, width and distribution profile are used as the feature parameters of vehicle type. This system is composed of two parts: one is an image preprocessor of vehicle images and the other one is a pattern classifier by neural networks. The experimental results show that our method has good results for the recognition of vehicle types and numbers.

  • PDF

A Hazardous Substance Monitoring Sensor Network Using Multiple Robot Vehicle (다수의 무인기를 이용한 유해 물질 감시 센서 네트워크)

  • Chun, Jeongmyong;Kim, Samok;Lee, Sanghu;Yoon, Seokhoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • 제15권1호
    • /
    • pp.147-155
    • /
    • 2015
  • In this paper, we consider a mobile sensor network for monitoring a polluted area where human beings cannot access. Due to the limited sensing range of individual unmanned vehicles, they need to cooperate to achieve an effective sensing coverage and move to a more polluted region. In order to address the limitations of sensing and communication ranges, we propose a hazardous substance monitoring network based on virtual force algorithms, and develop a testbed. In the considered monitoring network, each unmanned vehicle achieves an optimal coverage and move to the highest interest area based on neighboring nodes sensing values and locations. By using experiments based on the developed testbed, we show that the proposed monitoring network can autonomously move toward a more polluted area and obtain a high weighted coverage.

UAV based Wireless Ad hoc Network Performance Analysis (공중무인기 기반의 무선애드혹 네트워크 성능 분석)

  • Chun, Jeong-myong;Ha, Dong-hun;Park, Jae-seong;Yoon, Seok-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.123-125
    • /
    • 2015
  • Wireless ad hoc network which is comprised of wireless nodes that have the limited communication range is utilized to monitoring disaster area, tracing object, and tactical system. But in the case of wireless node on the ground, a network performance decrease because wireless channel is affected from obstacle or the node deployment is restricted. In this paper, we consider wireless network based on UAV(Unmanned Aerial Vehicle) which has little spatial constraint and quickly deploy a position. We implement test-bed included ground nodes and UAV, and measure throughput and PDR(Packet Delivery Ratio) according to the usage of UAV. We show that network performance is improved by relaying data on UAV.

  • PDF

An Investigation of Vehicle-to-Vehicle Distance Control Laws Using Hardware-in-the Loop Simulation (Hardware-in-the Loop Simulation 을 통한 차간거리 제어시스템의 제어 성능 연구)

  • Yi, Kyong-Su;Lee, Chan-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제26권7호
    • /
    • pp.1401-1407
    • /
    • 2002
  • This paper represents an investigation of the vehicle-to-vehicle distance control system using Hardware-in-the-Loop Simulation(HiLS). Control logic is primarily developed and tested with a specially equipped test vehicle. Establishment of an efficient and low cost development tool is a very important issue, and test vehicle approach is costly and time consuming. HiLS method is useful in the investigation of driver assistance and active safety systems. The HiLS system consists of a stepper motor for throttle control, a hydraulic brake system with an electronic vacuum booster, an electronic controller unit, a data logging computer which are used to save vehicle states and signals of actuator through a CAN and a simulation computer using mathematical vehicle model. Adaptation of a CAN instead of RS-232 Serial Interface for communication is a trend in the automotive industry. Since this environment is the same as a test vehicle, a control logic verified in laboratory can be easily transferred to a test vehicle.

International Standardization of Intelligent Broadband Communication of Train (철도차량 지능형 광대역 통신망의 국제표준화 동향)

  • Hwang, Hyeon-Chyeol;Lee, Ho-Yong;Cho, Bong-Kwang;Kwak, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1027-1034
    • /
    • 2011
  • Electronic devices in railway vehicle perform various functions such as not only braking and propulsion but also monitoring of vehicle condition, on-line diagnosis, and passenger information service, etc. These devices, distributed in vehicle, should be efficiently connected so as to properly perform the functions. IEC (International Electro-Technical Commission) standardized train communication network (TCN) as IEC 61375-1, -2. TCN can reduce the interconnecting work load by reducing the number of wire-line, compared with existing hard-wire connection, and it brings the efficient control by enabling various devices to share the information. But existing TCN can not satisfy the increasing service demands like passenger internet access and CCTV surveillance, etc. In this paper, we investigate ECN (Ethernet Consist Network) and ETN (Ethernet Train Backbone) which are proposed to satisfy these demands and in the process of standardization by IEC TC9 WG43.

  • PDF

Scientometric Analysis of Autonomous Vehicle through Paper Analysis of each Organization and Author (기관별·개인별 논문 분석을 통한 자율주행 자동차의 계량정보 분석)

  • Park, Jong-Kyu;Choi, Jeong-Dan;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제8권2호
    • /
    • pp.329-337
    • /
    • 2013
  • In this paper, we review scientometric analysis through paper analysis of each organization and author to decide research direction for autonomous driving vehicles. We confirms research trend of autonomous driving vehicle by using number of papers. Analysis of Index Level, International Cooperation Research Network, Analysis of Key and Q-L distribution according to each organization and author.

Scientometric Analysis of Autonomous Vehicle through Paper Analysis of each Nation (국가별 논문 분석을 통한 자율주행 자동차의 계량정보 분석)

  • Park, Jong-Kyu;Choi, Jeong-Dan;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • 제8권2호
    • /
    • pp.321-328
    • /
    • 2013
  • In this paper, we review scientometric analysis through paper analysis of an each nation to decide research direction for autonomous driving vehicles. We confirms research trend of autonomous driving vehicle by using Analysis of Index Level, International Cooperation Research Network, Analysis of Key of Nations according to an each nation.

The Development of Body Control Module using In Vehicle Network

  • Lee, Seong-Hun;Wu, Son-Jun;Lee, Suk;Choi, Bong-Yeol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.174.2-174
    • /
    • 2001
  • Increasing demand for safety features, driving comfort and operational convenience in automobiles requires an intensive use of electronic components such as sensors, actuators and Electronic Control Unit(ECU)'s. These growing number of electronics has given rise to problems concerning the increasing number, size and weight of the wiring harnesses. In order to resolve these problems, multiplexed wiring systems such as Controller Area Network(CAN) serial communication protocol are applied in vehicle. This paper introduces the development of Body Control Module(BCM)s using multiplexed wiring systems. The BCM's were developed and implemented using CAN, the most popular choice of in-vehicle communication protocols.

  • PDF

Intelligent Traffic Light using Fuzzy Neural Network

  • Park, Myeong-Bok;You-Sik, Hong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제3권1호
    • /
    • pp.66-71
    • /
    • 2003
  • In the past, when there were few vehicles on the road, the T.O.D.(Time of Day) traffic signal worked very well. The T.O.D. signal operates on a preset signal cycling which cycles on the basis of the average number of average passenger cars in the memory device of an electric signal unit. Today, with increasing traffic and congested roads, the conventional traffic light creates startup-delay time and end lag time so that thirty to forty-five percent efficiency in traffic handling is lost, as well as adding to fuel costs. To solve this problem, this paper proposes a new concept of optimal green time algorithm, which reduces average vehicle waiting time while improving average vehicle speed using fuzzy rules and neural networks. Through computer simulation, this method has been proven to be much more efficient than fixed time interval signals. Fuzzy Neural Network will consistanly improve average waiting time, vehicle speed, and fuel consumption.