• Title/Summary/Keyword: Vehicle Network

Search Result 1,530, Processing Time 0.025 seconds

A Study on Data Acquisition in the Invisible Zone of UAV through LTE Remote Control (LTE 원격관제를 통한 UAV의 비가시권 데이터 취득방안)

  • Jeong, HoHyun;Lee, Jaehee;Park, Seongjin
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.987-997
    • /
    • 2019
  • Recently the demand for drones is rapidly increasing, as developing Unmanned Aerial Vehicle (UAV) and growing interest in them. Compared to traditional satellite and aerial imagery, it can be used for various researches (environment, geographic information, ocean observation, and remote sensing) because it can be managed with low operating costs and effective data acquisition. However, there is a disadvantage in that only a small area is acquired compared to the satellite and an aircraft, which is a traditional remote sensing method, depending on the battery capacity of the UAV, and the distance limit between Ground Control System (GCS) and UAV. If remote control at long range is possible, the possibility of using UAV in the field of remote sensing can be increased. Therefore, there is a need for a communication network system capable of controlling regardless of the distance between the UAV and the GCS. The distance between UAV and GCS can be transmitted and received using simple radio devices (RF 2.4 GHz, 915 MHz, 433 MHz), which is limited to around 2 km. If the UAV can be managed simultaneously by improving the operating environment of the UAV using a Long-Term Evolution (LTE) communication network, it can make greater effects by converging with the existing industries. In this study, we performed the maximum straight-line distance 6.1 km, the test area 2.2 ㎢, and the total flight distance 41.75 km based on GCS through LTE communication. In addition, we analyzed the possibility of disconnected communication through the base station of LTE communication.

Artificial Neural Network-based Model for Predicting Moisture Content in Rice Using UAV Remote Sensing Data

  • Sarkar, Tapash Kumar;Ryu, Chan-Seok;Kang, Jeong-Gyun;Kang, Ye-Seong;Jun, Sae-Rom;Jang, Si-Hyeong;Park, Jun-Woo;Song, Hye-Young
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.611-624
    • /
    • 2018
  • The percentage of moisture content in rice before harvest is crucial to reduce the economic loss in terms of yield, quality and drying cost. This paper discusses the application of artificial neural network (ANN) in developing a reliable prediction model using the low altitude fixed-wing unmanned air vehicle (UAV) based reflectance value of green, red, and NIR and statistical moisture content data. A comparison between the actual statistical data and the predicted data was performed to evaluate the performance of the model. The correlation coefficient (R) is 0.862 and the mean absolute percentage error (MAPE) is 0.914% indicate a very good accuracy of the model to predict the moisture content in rice before harvest. The model predicted values are matched well with the measured values($R^2=0.743$, and Nash-Sutcliffe Efficiency = 0.730). The model results are very promising and show the reliable potential to predict moisture content with the error of prediction less than 7%. This model might be potentially helpful for the rice production system in the field of precision agriculture (PA).

Development of Autonomous Vehicle Learning Data Generation System (자율주행 차량의 학습 데이터 자동 생성 시스템 개발)

  • Yoon, Seungje;Jung, Jiwon;Hong, June;Lim, Kyungil;Kim, Jaehwan;Kim, Hyungjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.5
    • /
    • pp.162-177
    • /
    • 2020
  • The perception of traffic environment based on various sensors in autonomous driving system has a direct relationship with driving safety. Recently, as the perception model based on deep neural network is used due to the development of machine learning/in-depth neural network technology, a the perception model training and high quality of a training dataset are required. However, there are several realistic difficulties to collect data on all situations that may occur in self-driving. The performance of the perception model may be deteriorated due to the difference between the overseas and domestic traffic environments, and data on bad weather where the sensors can not operate normally can not guarantee the qualitative part. Therefore, it is necessary to build a virtual road environment in the simulator rather than the actual road to collect the traning data. In this paper, a training dataset collection process is suggested by diversifying the weather, illumination, sensor position, type and counts of vehicles in the simulator environment that simulates the domestic road situation according to the domestic situation. In order to achieve better performance, the authors changed the domain of image to be closer to due diligence and diversified. And the performance evaluation was conducted on the test data collected in the actual road environment, and the performance was similar to that of the model learned only by the actual environmental data.

A Comparative Study of Image Classification Method to Detect Water Body Based on UAS (UAS 기반의 수체탐지를 위한 영상분류기법 비교연구)

  • LEE, Geun-Sang;KIM, Seok-Gu;CHOI, Yun-Woong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.3
    • /
    • pp.113-127
    • /
    • 2015
  • Recently, there has been a growing interest in UAS(Unmanned Aerial System), and it is required to develop techniques to effectively detect water body from the recorded images in order to implement flood monitoring using UAS. This study used a UAS with RGB and NIR+RG bands to achieve images, and applied supervised classification method to evaluate the accuracy of water body detection. Firstly, the result for accuracy in water body image classification by RGB images showed high Kappa coefficients of 0.791 and 0.783 for the artificial neural network and minimum distance method respectively, and the maximum likelihood method showed the lowest, 0.561. Moreover, in the evaluation of accuracy in water body image classification by NIR+RG images, the magalanobis and minimum distance method showed high values of 0.869 and 0.830 respectively, and in the artificial neural network method, it was very low as 0.779. Especially, RGB band revealed errors to classify trees or grasslands of Songsan amusement park as water body, but NIR+RG presented noticeable improvement in this matter. Therefore, it was concluded that images with NIR+RG band, compared those with RGB band, are more effective for detection of water body when the mahalanobis and minimum distance method were applied.

Total reference-free displacements for condition assessment of timber railroad bridges using tilt

  • Ozdagli, Ali I.;Gomez, Jose A.;Moreu, Fernando
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.549-562
    • /
    • 2017
  • The US railroad network carries 40% of the nation's total freight. Railroad bridges are the most critical part of the network infrastructure and, therefore, must be properly maintained for the operational safety. Railroad managers inspect bridges by measuring displacements under train crossing events to assess their structural condition and prioritize bridge management and safety decisions accordingly. The displacement of a railroad bridge under train crossings is one parameter of interest to railroad bridge owners, as it quantifies a bridge's ability to perform safely and addresses its serviceability. Railroad bridges with poor track conditions will have amplified displacements under heavy loads due to impacts between the wheels and rail joints. Under these circumstances, vehicle-track-bridge interactions could cause excessive bridge displacements, and hence, unsafe train crossings. If displacements during train crossings could be measured objectively, owners could repair or replace less safe bridges first. However, data on bridge displacements is difficult to collect in the field as a fixed point of reference is required for measurement. Accelerations can be used to estimate dynamic displacements, but to date, the pseudo-static displacements cannot be measured using reference-free sensors. This study proposes a method to estimate total transverse displacements of a railroad bridge under live train loads using acceleration and tilt data at the top of the exterior pile bent of a standard timber trestle, where train derailment due to excessive lateral movement is the main concern. Researchers used real bridge transverse displacement data under train traffic from varying bridge serviceability levels. This study explores the design of a new bridge deck-pier experimental model that simulates the vibrations of railroad bridges under traffic using a shake table for the input of train crossing data collected from the field into a laboratory model of a standard timber railroad pile bent. Reference-free sensors measured both the inclination angle and accelerations of the pile cap. Various readings are used to estimate the total displacements of the bridge using data filtering. The estimated displacements are then compared to the true responses of the model measured with displacement sensors. An average peak error of 10% and a root mean square error average of 5% resulted, concluding that this method can cost-effectively measure the total displacement of railroad bridges without a fixed reference.

Encoder Type Semantic Segmentation Algorithm Using Multi-scale Learning Type for Road Surface Damage Recognition (도로 노면 파손 인식을 위한 Multi-scale 학습 방식의 암호화 형식 의미론적 분할 알고리즘)

  • Shim, Seungbo;Song, Young Eun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.89-103
    • /
    • 2020
  • As we face an aging society, the demand for personal mobility for disabled and aged people is increasing. In fact, as of 2017, the number of electric wheelchair in the country continues to increase to 90,000. However, people with disabilities and seniors are more likely to have accidents while driving, because their judgment and coordination are inferior to normal people. One of the causes of the accident is the interference of personal vehicle steering control due to unbalanced road surface conditions. In this paper, we introduce a encoder type semantic segmentation algorithm that can recognize road conditions at high speed to prevent such accidents. To this end, more than 1,500 training data and 150 test data including road surface damage were newly secured. With the data, we proposed a deep neural network composed of encoder stages, unlike the Auto-encoding type consisting of encoder and decoder stages. Compared to the conventional method, this deep neural network has a 4.45% increase in mean accuracy, a 59.2% decrease in parameters, and an 11.9% increase in computation speed. It is expected that safe personal transportation will be come soon by utilizing such high speed algorithm.

Secure and Efficient V2V Message Authentication Scheme in Dense Vehicular Communication Networks (차량 밀집환경에서 안전하고 효율적인 V2V 메시지 인증기법)

  • Jung, Seock-Jae;Yoo, Young-Jun;Paik, Jung-Ha;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.4
    • /
    • pp.41-52
    • /
    • 2010
  • Message authentication is an essential security element in vehicular ad-hoc network(VANET). For a secure message authentication, integrity, availability, privacy preserving skill, and also efficiency in various environment should be provided. RAISE scheme has been proposed to provide efficient message authentication in the environment crowded with lots of vehicles and generally considered to be hard to provide efficiency. However, as the number of vehicles communicating in the area increases, the overhead is also incurred in proportion to the number of vehicles so that it still needs to be reduced, and the scheme is vulnerable to some attacks. In this paper, to make up for the vulnerabilities in dense vehicular communication network, we propose a more secure and efficient scheme using a process that RSU(Road Side Unit) transmits the messages of neighbor vehicles at once with Bloom Filter, and timestamp to protect against replay attack. Moreover, by adding a handover function to the scheme, we simplify the authentication process as omitting the unnecessary key-exchange process when a vehicle moves to other area. And we confirm the safety and efficiency of the scheme by simulating the false positive probability and calculating the traffic.

Deep Learning Description Language for Referring to Analysis Model Based on Trusted Deep Learning (신뢰성있는 딥러닝 기반 분석 모델을 참조하기 위한 딥러닝 기술 언어)

  • Mun, Jong Hyeok;Kim, Do Hyung;Choi, Jong Sun;Choi, Jae Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.4
    • /
    • pp.133-142
    • /
    • 2021
  • With the recent advancements of deep learning, companies such as smart home, healthcare, and intelligent transportation systems are utilizing its functionality to provide high-quality services for vehicle detection, emergency situation detection, and controlling energy consumption. To provide reliable services in such sensitive systems, deep learning models are required to have high accuracy. In order to develop a deep learning model for analyzing previously mentioned services, developers should utilize the state of the art deep learning models that have already been verified for higher accuracy. The developers can verify the accuracy of the referenced model by validating the model on the dataset. For this validation, the developer needs structural information to document and apply deep learning models, including metadata such as learning dataset, network architecture, and development environments. In this paper, we propose a description language that represents the network architecture of the deep learning model along with its metadata that are necessary to develop a deep learning model. Through the proposed description language, developers can easily verify the accuracy of the referenced deep learning model. Our experiments demonstrate the application scenario of a deep learning description document that focuses on the license plate recognition for the detection of illegally parked vehicles.

An Experimental Study on Assessing Precision and Accuracy of Low-cost UAV-based Photogrammetry (저가형 UAV 사진측량의 정밀도 및 정확도 분석 실험에 관한 연구)

  • Yun, Seonghyeon;Lee, Hungkyu;Choi, Woonggyu;Jeong, Woochul;Jo, Eonjeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.207-215
    • /
    • 2022
  • This research has been focused on accessing precision and accuracy of UAV (Unmanned Aerial Vehicle)-derived 3-D surveying coordinates. To this end, a highly precise and accurate testing control network had been established by GNSS (Global Navigation Satellite Systems) campaign and its network adjustment. The coordinates of the ground control points and the check points were estimated within 1cm accuracy for 95% of the confidence level. FC330 camera mounted on DJI Phantom 4 repeatedly took aerial photos of an experimental area seven times, and then processed them by two widely used software packages. To evaluate the precision and accuracy of the aerial surveys, 3-D coordinates of the ten check points which automatically extracted by software were compared with GNSS solutions. For the 95% confidence level, the standard deviation of two software's result is within 1cm, 2cm, and 4cm for the north-south, east-west, and height direction, and RMSE (Root Mean Square Error) is within 9cm and 8cm for the horizontal, vertical component, respectively. The interest is that the standard deviation is much smaller than RMSE. The F-ratio test was performed to confirm the statistical difference between the two software processing results. For the standard deviation and RMSE of most positional components, exception of RMSE of the height, the null hypothesis of the one-tailed tests was rejected. It indicates that the result of UAV photogrammetry can be different statistically based on the processing software.

A Study on Configuration of the Road Guide Data Model for Visually Impaired Pedestrian (시각적 교통약자를 위한 길안내 데이터 모델 구축에 관한 연구)

  • Park, Sung Ho;Kwon, Jay Hyoun;Lee, Jisun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.119-133
    • /
    • 2022
  • Due to the improvement of surveying, mapping and communication techniques, various apps for road direction guides and vehicle navigations have been developed. Although such a development has impacted on walking and driving, there is a limit to improving the daily convenience of the socially impaired people. This is mainly due to the fact that the software have been developed for normal pedestrians and drivers. Therefore, visually impaired people still have problems with the confusion of direction and/or non-provision of risk factors in walking. This study aimed to propose a scheme which constructs data for mobility-impaired or traffic-impaired people based on various geospatial information. The factors and components related to walking for the visually impaired are selected by geospatial data and a walking route guidance network that can be applied to a commercial software. As a result, it was confirmed that road direction guidance would be possible if additional contents, such as braille blocks (dotted/linear), sound signals, bus stops, and bollards are secured. In addition, an initial version of the application software was implemented based on the suggested data model and its usefulness was evaluated to a visually impaired person. To advance the stability of the service in walking for the visually impaired people, various geospatial data obtained by multiple institutes are necessary to be combined, and various sensors and voice technologies are required to be connected and utilized through ICT (Information and Communications Technologies) technology in near future.