• Title/Summary/Keyword: Vehicle Load Test

Search Result 446, Processing Time 0.03 seconds

Experimental Study on the Load Carrying Performance and Driving Torque of Gas Foil Thrust Bearings (가스 포일 스러스트 베어링의 하중지지 성능 및 구동 토크에 관한 실험적 연구)

  • Kim, Tae Ho;Lee, Tae Won;Park, Moon Sung;Park, Jungmin;Kim, Jinsung;Jeong, Jinhee
    • Tribology and Lubricants
    • /
    • v.31 no.4
    • /
    • pp.141-147
    • /
    • 2015
  • Gas foil thrust bearings (GFTBs) have attractive advantages over rolling element bearings and oil film thrust bearings, such as oil-free operation, high speed stability, and high-temperature operation. However, GFTBs have lower load carrying capacity than the other two types of bearings owing to the inherent low gas viscosity. The load carrying capacity of GFTBs depends mainly on the compliance of the foil structure and the formed hydrodynamic wedge, where the gas pressure field is generated between the top foil and the thrust runner. The load carrying capacity of the GFTBs is very important for the suitable design of oil-free turbomachinery with high performance. The aim of the present study is to identify the characteristics of the load carrying performance of GFTBs. A new test rig for the experimental measurements is designed to provide static loads up to 800 N using a pneumatic cylinder. The maximum operating speed of the driving motor is 30,000 rpm. A series of experimental tests—lift-off test, static load performance test, and maximum load capacity test—estimate the performance of a six-pad GFTB, in terms of the static load, driving torque, and temperature. The maximum load capacity is determined by increasing the static load until the driving torque rises suddenly with a sharp peak. The test results show that the torque and temperature increase linearly with the static load. The estimated maximum load capacity per unit area is approximately 80.5 kPa at a rotor speed of 25,000 rpm. The test results can be used as a design guideline for GFTBs for realizing oil-free turbomachinery.

Durability Design of a Passenger Car Front Aluminum Sub-frame using Virtual Testing Method (가상시험기법을 이용한 승용차 전륜 알루미늄 서브프레임 내구설계)

  • Nam, Jin-Suk;Shin, Hang-Woo;Choi, Gyoo-Jae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.368-375
    • /
    • 2012
  • Durability performance evaluation of automotive components is very important and time consuming task. In this paper, to reduce vehicle component development time and cost virtual testing simulation technology is used to evaluate durability performance of a passenger car front aluminum sub-frame. Multibody dynamics based vehicle model and virtual test simulation model of a half car road simulator are validated by comparisons between rig test results and simulation results. Durability life prediction of the sub-frame is carried out using the model with road load data of proving ground which can evaluate accelerated durability life. We found that the durability performance of the sub-frame is sufficient and it can be predicted within short time compared to rig test time.

Analysis on the Factors Affecting the Results of Full Frontal Barrier Impact Test (고정벽 정면충돌시험 결과에 미치는 요인 분석)

  • Lim, Jaemoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.8 no.3
    • /
    • pp.5-9
    • /
    • 2016
  • The objective of this study was to find the factors affecting the results of full frontal barrier impact test for the NCAP (New Car Assessment Program). To find the factors, the frontal NCAP test results of the NHTSA (National Highway Traffic Safety Administration) were utilized. The three tested vehicle were same model year. It was observed the second peak value of barrier force affected the occupant injury risk. As the second peak value of the barrier force increases, the injury risk of the driver side occupant increases as well.

Analysis of Agricultural Working Load Experiments for Reduction Gear Ratio Design of an Electric Tractor Powertrain (전기구동 파워트레인의 감속기어비 설계를 위한 농용 트랙터의 작업 부하 분석)

  • Kim, Jung-Yun;Park, Yeong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.138-144
    • /
    • 2012
  • Recent environmental issues such as exhaust gas and greenhouse effect make the agricultural machinery market takes into account the hybrid and electric propulsion technology used in automotive engineering. Generally the agricultural machinery, particularly an agricultural tractor, needs large load capacity and long continuous operating time comparing with conventional vehicles. In case of a pure electric tractor, it is necessary for considering large capacity batteries and long charging time. Therefore we take an AER extended PHEV (All Electric Range extended Plug-in Hybrid Electric Vehicle) power transmission system in developing an electric tractor in this study. First we propose a PHEV powertrain structure in order to substitute the conventional diesel engine equipped tractor. And we performed the road tests using a conventional mechanical tractor with various load conditions, which were classified and statistically treated real agricultural works. The test results were analysed with respect to the power characteristics of the power source. Finally using the test result, we designed two-stepped reduction gear ratios in the proposed an electric tractor powertrain for carrying out typical agricultural works.

A Study on Structural Safety of a Urethane Wheel Using FEM (유한요소법을 이용한 우레탄 휠의 구조 안전성에 관한 연구)

  • 송하종;정일호;이수호;박태원;박중경;이형;조동협;김혁;이경목
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1042-1047
    • /
    • 2004
  • Urethane is a high polymeric and elastic material useful in designing mechanic parts that cannot be molded in rubber or plastic material. Especially, urethane is high in mechanical strength and anti-abrasive. Hereby, an urethane coated aluminum wheel is used for supporting of OHT vehicle moving back and forth to transport products. For the sake of verifying the safety of the vehicle, structural safety for applied maximum dynamic load on a urethane wheel needs to be carefully examined while driving. Therefore, we have performed the dynamic simulation on the OHT vehicle model. Although the area definition of applied load can be obtained from the previous study of Hertzian and Non-Hertzian contact force model when having exact properties of contact material, static analysis is simulated, since the proper material properties of urethane have not been guaranteed, after we have performed the actual contact area test for each load. In case of this study, the method of distributing load for each node is included. Finally, in comparison with result of analysis and load-displacement curve obtained from the compression test, we have defined the material properties of urethane. In the analysis, we have verified the safety of the wheel. After all, we have performed a mode analysis using the obtained material properties. With the result, we have the reliable finite element model.

  • PDF

Evaluation of Train Running Safety for Direct Fixation Concrete Track on Light Rapid Transit (경전철 직결식 콘크리트 궤도구조의 열차주행안전성 평가)

  • Choi, Jung-Youl;Kim, Jun-Hyung;Chung, Jee-Seung;Lee, Sun-Gil
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.41-46
    • /
    • 2017
  • The coefficient of derailment and the rate of wheel load reduction were used as the index of train running safety that was directly affected the train derailment safety. In aspects of track, the train running safety depends on the complex interaction between wheel and rail, and the track-vehicle conditions (i.e., the curvature, cant, track system, vehicle speed and the operation conditions, etc). In this study, the relationship between the train running safety and the track curvature and vehicle speed for direct fixation concrete tracks currently employed in Korean light rapid transit was assessed by performing field tests using actual vehicles running along the service lines. The measured dynamic wheel load, lateral wheel load and lateral displacement of rail head were measured for same train running on four tested tracks under real conditions, which included curved and tangent tracks placed on the tunnel and bridge, thus increasing the train speed by approximately maximum design speed of each test site. Therefore, the measured dynamic track response was applied to the running safety analysis in order to evaluate the coefficient of derailment, the rate of wheel load reduction and the track gauge widening at each test site, and compare with the corresponding Korean train running safety standard. As the results, the lateral track response of direct fixation concrete track appeared to increase with the decreased track curvature; therefore, it was inferred that the track curvature directly affected the train running safety.

A Study on Structural Safety of a Urethane Wheel Using FEM (유한요소법을 이용한 우레탄 휠의 구조 안전성에 관한 연구)

  • Song Ha Jong;Jong Il Ho;Yoon Ji Won;Jun Kab Jin;Park Joong Kyung;Lee Hyung;Park Tae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.114-120
    • /
    • 2005
  • Urethane is a high polymeric and elastic material useful in designing mechanic parts that cannot be molded with rubber or plastic material. In particular, urethane is high in mechanical strength and anti-abrasive. Hereby, a urethane coated aluminum wheel is used to support of the OHT vehicle moving back and forth to transport products. For the sake of verifying the safety of the vehicle, structural safety fur applied maximum dynamic load on a urethane wheel must be examined carefully while driving. Therefore, we performed a dynamic simulation on the OHT vehicle model and we determined the driving load. The area definition of applied load may be obtained from the previous study of Hertzian and Non-Hertzian contact force model having exact properties of contact material. But the static analysis is simulated after we have performed the actual contact area test for each load since the proper material properties of urethane have not been guaranteed. In this study, the method of distributing loads for each node is included. Finally, in coMParison with the results of analysis and load-displacement curve obtained from the compression test, we have defined the material properties of urethane. In the analysis, we verified the safety of the wheel. Finally, we performed a mode analysis using the obtained material properties. With these results, we presented a reliable finite element model.

Development of Tire Test Bed for Dynamic Behavior Analysis of Vehicles on Off-roads (비포장노면 차량 거동 분석을 위한 타이어 테스트베드 개발)

  • Lee, Dae-Kyung;Sohn, Jeong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.29-35
    • /
    • 2022
  • When a vehicle is driven off a road surface, the deformations of the road surface and tire are combined. Consequently, the dynamic behavior of wheel movement becomes difficult to predict and control. Herein, we propose a tire test bed to capture the dynamic behavior of tires moving on sand and soil. Based on this study, it is discovered that the slip rate can be controlled, and the vertical force can be measured using a load cell. The test results show that this test bed can be useful for capturing the dynamic behavior of the tire and validating dynamic simulations. In fact, the tire test bed developed in this study can be used to verify the results of computer simulations. In addition, it can be used for basic experiments pertaining to the speed control of unmanned autonomous vehicles.

Structure Analysis and Loading Test of Torque arm for Driving Gear Unit of Unique Model (독자모델 감속구동장치 토크암의 구조해석 및 하중시험에 관한 연구)

  • Cha Soo-Deok;Choi Jin-Wook;Yu Jai-Il;Lee Min-Soo
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.211-215
    • /
    • 2004
  • This paper describes the result of structure analysis and load test of torque arm for driving gear unit. The purpose of the analysis and test is to evaluate an safety which torque arm shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load. Driving gear unit consist of gearbox and torque arm. Both components, torque arm is significant component subjected to the vehicle and motor loads. The evaluation methode is used the FEM analysis, static and fatigue test. The test results have been very safety and stable for design load conditions.

  • PDF

A Study on the Rail Pone of Transition Curve Track to Speed Up of Tilting train (틸팅차량 완화곡선 증속 주행시 궤도작용력 검토)

  • Shin, Tae-Hyoung;Choi, Jung-Youl;Eum, Ki-Young;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.529-538
    • /
    • 2009
  • A trial run of locally-developed tilting train has been in process on Chungbuk line since the test vehicle was first produced. For the system stabilization, interface verification among the systems including track, structure, catenary and signaling system, not to mention the rolling stock, is very crucial. Therefore, in this study, the dynamic rail force of the tilting (Hanvit 200), high-speed (KTX) and general (Mugunghwa) vehicle caused by driving in transition curve track was measured. And, it compared the tilting response with the other by using the measured wheel load data in transition curve track, and then evaluated probability the range of wheel load fluctuation for the variable dynamic vertical and lateral wheel load. As a result, a range of wheel load by occured a change of cant from the high-speed and general vehicle which had fixed bogie structure was distributed throughout small deviation (${\Delta}8{\sim}13kN$). Otherwise, in case of the tilting train which was consisted of the pendulum bogie structure was distributed wide range about large deviation (${\Delta}25{\sim}28kN$) by changed of cant.

  • PDF