• 제목/요약/키워드: Vehicle Load

검색결과 1,446건 처리시간 0.037초

Development of 6kW ZVS Boost Converter by 4-Parallel Operation (4-병렬 제어 기법을 적용한 6kW 영전압 스위칭 승압형 컨버터 개발)

  • Rho, Min-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제58권1호
    • /
    • pp.86-92
    • /
    • 2009
  • This paper presents development of 6kw ZVS(Zero Voltage Switching) boost converter by 4-parallel operation. To realize a high capacity converter with 6 kw, 4-parallel operation of 1.5kW unit module is proposed in this paper. To meet high ratio input to output voltage, isolated type booster converter is designed. To achieve ZVS operation of 4-switches of full bridge and protect a voltage overshoot caused by switch turn-off, simple active-clamp circuit is applied to the primary side. For parallel operation of 4-modules, master-slave control method is proposed to achieve input current sharing of 4-unit converter modules accurately. For performance tests, simulation is carried out. Also, load and experimental tests of the developed booster converter, 230Vdc/6kW, are carried out under various conditions. For field tests, the developed converter is applied for boosting a battery power to high DC_link voltage for a VSI inverter which starts a micro-turbine(MT) installed in vehicle and it's performance is verified through high speed motoring a MT up to tens of thousands of rpm.

Equivalent Circuit Analysis of Interior Permanent Magnet Synchronous Motor Considering Armature Reaction (전기자 반작용을 고려한 매입형 영구자석 동기전동기의 등가회로 해석)

  • Jung, Jae-Woo;Lee, Jung-Jong;Kwon, Soon-O;Hong, Jung-Pyo;Kim, Ki-Nam
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.756-757
    • /
    • 2008
  • Interior permanent magnet synchronous motor (IPMSM) which has high power density is usually applied to traction motor for hybrid electric vehicle. In order to analyze characteristics of IPMSM, d- and q-axis equivalent circuit analysis is generally used. However, the line current of IPMSM calculated by d- and q-axis equivalent circuit analysis differ from measured value. This error is mainly appeared under the flux weakening control. In order to reduce the error between calculated and measured line current, no-load linkage flux which is calculated with considering saturation of magnetic core and armature reaction is applied to characteristic analysis. The result of line current calculated by the method dealt with in this paper is verified by comparison with experimental results.

  • PDF

The Relative Effects of Feedback Frequency and Specificity of Eco-IVIS on Fuel Efficiency and Workload (에코 드라이빙 피드백 제공 빈도와 구체성이 연비와 작업부하에 미치는 효과)

  • Lee, Kyehoon;Cho, Hangsoo;Oah, Shezeen;Moon, Kwangsu
    • Journal of the Korean Society of Safety
    • /
    • 제30권6호
    • /
    • pp.132-138
    • /
    • 2015
  • This study examined the relative effects of feedback frequency and specificity of Eco-IVIS(eco in-vehicle information system) on the fuel-efficiency and workload. Eighty participants randomly assigned into four experimental groups (high frequency/specific, high frequency/global, low frequency/specific, and low frequency/global feedback) and they drove 16.4Km motorway under the each feedback condition. The dependent variable were fuel efficiency and Drive Activity Load Index which measured participants' subjective ratings of driving workload. The results showed that high frequent feedback was more effective for increasing fuel-efficiency than low frequent feedback, however, there was no significant difference of fuel-efficiency between specific and global feedback. Although, overall DALI score was comparable among four experimental conditions, visual demand score was significant higher under the high frequent feedback condition than low frequent feedback.

Optimal Design of Filament Wound Composite Cylinders under External Hydrostatic Pressure using a Micro-Genetic Algorithm (마이크로 유전자 알고리즘을 이용한 외부 수압을 받는 필라멘트 와인딩 복합재 원통의 최적 설계)

  • Moon, Chul-Jin;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • 제23권4호
    • /
    • pp.14-20
    • /
    • 2010
  • In this study, a micro-genetic algorithm was utilized for the optimal design of filament wound composite cylinders subjected to hydrostatic pressure for underwater vehicle application. The objective of the optimization was to maximize the design allowable load considering the buckling and static failure loads. A commercial finite element program, MSC.NASTRAN, was used for buckling and failure analysis. An open-source micro genetic algorithm by Carroll was modified for the optimization. The design variables are the helical winding angle and hoop layer thickness. The results of examples show that the micro genetic algorithm can be successfully applied to the optimization of filament wound cylinders with various geometries and gives better efficiency than general genetic algorithms.

A Study on the Non-Linear Static Analysis for L-type Front Lower Control Arm (L 형 전륜 로어 암의 대하중 강도 해석 기법 연구)

  • Lee, Soon-Wook;Koo, Ja-Suk;Song, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.453-458
    • /
    • 2008
  • Under driving condition, A vehicle experiences various kinds of loads, which brings on the buckling and fracture of suspension systems. Lower control arm (LCA), which consists of 2 bush joints and 1 ball joint connection, is the one of the most important parts in the suspension system. The bush joints absorb the impact load and reduce the vibration from the road. When analyzing the LCA behavior, it is important to understand the material properties and boundary conditions of bushing systems correctly, because of the nonlinearity characteristics of the rubber. In this paper, in order to predict the large scale deformation of the LCA more precisely, three factors are newly suggested, that is, coupling of bush stiffness between translation and rotation, bush extraction force and maximum rotation angle of ball joint. LCA stiffness is estimated by CAE and component test. Analysis and test results are almost same and the validity of considering three factors in LCA analysis is verified.

  • PDF

Anti-Slip Control By Adhesion Effort Estimation Of Minimized Railway Vehicle (축소형 철도차량장치의 점착력 추정에 의한 Anti-Slip 제어)

  • Jeon K.Y.;Lee S.H.;Kang S.W.;Oh B.H.;Lee H.G.;Kim Y.J.;Han K.H.
    • Proceedings of the KIPE Conference
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.536-539
    • /
    • 2003
  • In electric motor coaches, the rolling stocks move by the adhesive effort between rail and driving wheel. Generally, the adhesive effort is defined by the function of both the weight of electric motor coach and the adhesive effort between rails and driving wheel. The characteristics of adhesive effort is strongly affected by the conditions between rails and driving wheel. When the adhesive effort decreases suddenly, the electric motor coach has slip phenomena. This paper proposes a re-adhesion control algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force using load torque disturbance observer. Based on this estimated adhesive effort, the re-adhesion control is performed to obtain the maximum transfer of the tractive effort.

  • PDF

A Fully Soft Switched Two Quadrant Bidirectional Soft Switching Converter for Ultra Capacitor Interface Circuits

  • Mirzaei, Amin;Farzanehfard, Hosein;Adib, Ehsan;Jusoh, Awang;Salam, Zainal
    • Journal of Power Electronics
    • /
    • 제11권1호
    • /
    • pp.1-9
    • /
    • 2011
  • This paper describes a two quadrant bidirectional soft switching converter for ultra capacitor interface circuits. The total efficiency of the energy storage system in terms of size and cost can be increased by a combination of batteries and ultra capacitors. The required system energy is provided by a battery, while an ultra capacitor is used at high load power pulses. The ultra capacitor voltage changes during charge and discharge modes, therefore an interface circuit is required between the ultra capacitor and the battery. This interface circuit must have good efficiency while providing bidirectional power conversion to capture energy from regenerative braking, downhill driving and the protecting ultra capacitor from immediate discharge. In this paper a fully soft switched two quadrant bidirectional soft switching converter for ultra capacitor interface circuits is introduced and the elements of the converter are reduced considerably. In this paper, zero voltage transient (ZVT) and zero current transient (ZCT) techniques are applied to increase efficiency. The proposed converter acts as a ZCT Buck to charge the ultra capacitor. On the other hand, it acts as a ZVT Boost to discharge the ultra capacitor. A laboratory prototype converter is designed and realized for hybrid vehicle applications. The experimental results presented confirm the theoretical and simulation results.

Experimental Evaluation of Position Sensorless Control on Hybrid Electric Vehicle Applications

  • Choi, Chan-Hee;Kim, Bum-Sik;Lee, Young-Kook;Jung, Jin-Hwan;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.464-470
    • /
    • 2011
  • In this paper, the feasibility of applying a position sensorless control technique to hybrid electric vehicles (HEVs) is practically evaluated. The proposed position estimator has a straightforward structure with properties that combines the model and the saliency tracking-based rotor position estimation for interior permanent magnet synchronous motors (IPMSMs). The proposed method can be used in the event of sensor loss or sensor recovery to sustain continuity of operations. The developed system takes into account the estimated position transition between two distinct sensorless methods. The transition is enhanced by introducing a synchronized transition algorithm based on a single tracking observer. Extensive experimental results are presented to verify the principles and show a reliable estimation performance over the entire speed range including standstill under 150% load conditions.

A Development of Forklift Shift and Constant Speed Endurance Test Controller for Dynamometer Test (다이나모 시험용 지게차 변속 및 정속 내구시험 제어기 개발)

  • Jung, G.H.;Lee, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • 제4권3호
    • /
    • pp.13-21
    • /
    • 2007
  • A forklift is a motive machine powered by LPG, diesel engine or electric motors. The internal combustion engine type forklift is equipped with automatic transmission to meet the required drive load as well as the easy operation of the vehicle. This paper deals with the shift control and endurance test controller which is developed for the functional test of the newly designed automatic transmission on a dynamometer test bench. Its major function is to control the proportional solenoid currents, which is directly related to clutch pressures, for the given reference current trajectory during shift and sequential operation of shift schedule designed for the durability test at each gear. It also has the ability to monitor all the necessary test data through RS232 communication and log them to disk files. The current controller of embedded system is designed from the identified dynamics of solenoid coil and the current reference can be easily modified with a user interface software on PC so as to match the shift data by experiments.

  • PDF

Vibrational Characteristics of an End Beam of a Freight Cal- on the Taebaek Line (태백선을 주행하는 화차 엔드빔의 진동특성에 관한 연구)

  • 문경호;홍재성;이동형;서정원;함영삼
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제14권10호
    • /
    • pp.962-967
    • /
    • 2004
  • A bogie is the device that connects a car body and wheel sets of a rail vehicle. It is the critical component that determine:; the running safety, The bogie consists of a frame, suspensions, brakes and wheel sets. Various analyses including a numerical simulation using a finite element method, a static load test, a fatigue test, ai)d r running test should be carried out to design the bogie. However cracks have been found at some end beams of the bogies mounted on the freight cars running with the high speed. The cracks of the end beam results in deterioration of the brake performance an the running safety, A new design has been suggested to solve this problem by ROTEM company and it's performance has been tested in this paper. Numerical simulations and dynamic tests are carried out to figure out the causes of cracks in the conventional bogie, and the vibrational characteristics of the improved bogie are compared with those of the conventional one.