• Title/Summary/Keyword: Vehicle Interior Noise

Search Result 191, Processing Time 0.02 seconds

Sound Quality Evaluation Based on the Mahalanobis Distance for the Interior Noise of Driving Vehicles with Various the Tire Type (타이어 종류에 따른 차량 실내 소음의 Mahalanobis Distance 를 이용한 음질인덱스 구축)

  • Jeong, Jae-Eun;Yang, In-Hyung;Park, Goon-Dong;Lee, You-Yub;Oh, Jae-Eung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1871-1876
    • /
    • 2010
  • The reduction of vehicle interior noise has been the main interest of NVH engineers. The driver's perception of the vehicle noise is strongly affected by the psychoacoustic characteristics of the noise and the SPL. The existing methods to evaluate the SQ for vehicle interior noise are linear regression analysis of subjective SQ metrics by statistics and the estimation of subjective SQ values by neural network. However, these methods strongly depend on jury tests, this leads to difficulties. To reduce the important of the jury tests, we suggest a new method using the Mahalanobis distance for SQ evaluation. And, the optimal characteristic values that influenced the results of sound quality evaluation on the basis by main effect. Finally, we developed a new method based on the MD method to evaluate sound quality. The result of noise evaluation revealed that the sound quality could be well improved by changing the structural characteristics of the vehicle.

Development Technique of Tubular Shaft for Reduction of Booming Noise in Vehicle Interior Caused by Drive Shaft (구동축과 연관된 차량의 부밍 소음 저감을 위한 중공축 개발 기법)

  • Ko, Kang-Ho;Choi, Hyun-Joon;Kim, Young-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.187-193
    • /
    • 2000
  • In order to reduce the booming noise caused by first bending mode of drive shaft, this paper proposes a simulation program for prediction of the bending mode frequency of any tubular shaft. This program consists of a pre-processor for modeling of geometrical shape of drive shaft and applying the boundary conditions of various joints, a processor for constructing of global finite element matrices using beam elements and an eigen-solver based on MATLAB program. Using this simulation program, the effective and accurate FE model for a shaft attached in vehicle can be obtained by aid of database for stiffness of each joint. Thus the resonance frequencies and mode shapes of a shaft can be calculated accurately. Because the effect of the resonance on interior noise can be verified, more improved shaft can be proposed at the early stage of design.

  • PDF

Identification of the Interior Noise Generated by SUV Axle and Modification of the Structural on Axle System for Noise Reduction (SUV용 액슬의 소음원 규명 및 소음 저감을 위한 액슬의 구조변경에 관한 연구)

  • Lee, Ju-Young;Jo, Yoon-Kyeong;Kim, Jong-Youn;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.582-592
    • /
    • 2006
  • This paper presents experimental and analytic methods to reduce interior noise generated by car axle. The test vehicle has a whine noise problem at passenger seats. In order to identify transfer path of interior axle noise, the vibration path analysis, the modal analysis and running modal analysis are systematically employed. By using these various methods, it has been founded that the interior noise generated by car axle was air borne noise. To reduce and predict axle noise, various structural modifications are performed by using FEM and BEM techniques, respectively. Through the modification of the axle structure, the air borne noise of the axle was reduced 3$\sim$4 dBA level.

Decomposition of Surface Pressure Fluctuations on Vehicle Side Window into Incompressible/compressible Ones Using Wavenumber-frequency Analysis (파수-주파수 분석을 이용한 자동차 옆 창문 표면 압력 섭동의 비압축성/압축성 성분 분해)

  • Lee, Songjune;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.765-773
    • /
    • 2016
  • The vehicle interior noise caused by exterior fluid flow field is one of critical issues for product developers in a design stage. Especially, turbulence and vortex flow around A-pillar and side mirror affect vehicle interior noise through a side window. The reliable numerical prediction of the noise in a vehicle cabin due to exterior flow requires distinguishing between the aerodynamic (incompressible) and the acoustic (compressible) surface pressures as well as accurate computation of surface pressure due to this flow, since the transmission characteristics of incompressible and compressible pressure waves are quite different from each other. In this paper, effective signal processing technique is proposed to separate them. First, the exterior flow field is computed by applying computational aeroacoustics techniques based on the Lattice Boltzmann method. Then, the wavenumber-frequency analysis is performed for the time-space pressure signals in order to characterize pressure fluctuations on the surface of a vehicle side window. The wavenumber-frequency diagrams of the power spectral density shows clearly two distinct regions corresponding to the hydrodynamic and the acoustic components of the surface pressure fluctuations. Lastly, decomposition of surface pressure fluctuation into incompressible and compressible ones is successfully accomplished by taking the inverse Fourier transform on the wavenumber-frequency diagrams.

The study on tire Pattern Noise (타이어 패턴 소음에 대한 고찰)

  • Hwang, S.W.;Bang, M.J.;Rho, G.H.;Cho, C.T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.340-343
    • /
    • 2006
  • As the needs of consumer on ride comforts increase and the reduction of road traffic noise tightened step by step, the power unit noise emitted by cars has been reduced. It has been found that tire noise dominates noise produced by the power-train when vehicles are driven at high speeds. Therefore, in these days, tire/pavement noise is concerned. Tire/pavement noise is affected by pavement type and vehicle???s transmission loss. Tire noise mechanism is produced by several mechanisms. The sound of tire can propagate either through the air or through the structure of vehicle. Pattern noise is the result of pressure variations through the air to the interior side of vehicle. Especially, on smooth asphalt the periodicity of tread design, pitch sequence is important factor, which have an influence on the reduction of tire noise.

  • PDF

Noise Estimation in a Passenger Compartment and Trunk Coupled System by Using the Vibro-Acoustic Reciprocity (진동-음향 상반성을 이용한 차실-트렁크 연성계의 소음평가)

  • 이진우;이장무;김석현;박동철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.178-185
    • /
    • 2001
  • This paper describes the correlation between the interior noise and the trunk wall vibration. Using the vibro-acoustic reciprocity, effect of the trunk wall vibration on the compartment noise is investigated on a medium size car. In the low frequency range, vehicle interior noise is dominated by several acoustic modes of the passenger compartment and the vibration modes of the surrounding shell parts. Especially, vibration of the trunk wall radiates sound and it is transferred through holes on the package tray into the passenger compartment. This paper experimentally reveals that sound can be well produced at some particular vibration modes of the trunk lid and it strongly influences the compartment noise through package tray holes. Contributions of the trunk walls to the interior noise are estimated by measuring the acoustic-structural transfer function, based on the vibro-acoustical reciprocity theorem.

  • PDF

Development of Tubular Shaft for Reduction of Booming Noise in Vehicle Interior (차량 부밍 소음 저감을 위한 중공축 개발)

  • 고강호;국형석;이재형
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.1
    • /
    • pp.203-208
    • /
    • 2002
  • In order to reduce the booming noise caused by first bending mode of a drive shaft, this paper proposes a simulation program for prediction of the bending mode frequency of any tubular shaft. This program consists of a pre-processor for modeling of geometrical shape of the drive shaft with boundary conditions of various joints, a processor for constructing of global finite element matrices using beam elements and an eigen-solver based on MATLAB program. Using this simulation program, the effective and accurate FE model far a shaft attached to vehicle can be obtained by aid of database for stiffness of each joint. Thus the resonance frequencies and mode shapes of a shaft can be calculated accurately. Because the effect of the resonance on interior noise can be verified, more improved shaft will be proposed at the early stage of design.

Analysis of Excitation Forces for the Prediction of the Vehicle Interior Noise by the Powertrain (Powertrain에 의한 차량실내소음 예측을 위한 엔진 가진력 해석에 관한 연구)

  • Lee, Joo-Hyung;Kim, Sung-Jong;Kim, Tae-Yong;Lee, Sang-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1244-1251
    • /
    • 2006
  • The objective of this paper is to get excitation forces of the engine at each of the brackets for the prediction of the vehicle interior noise by the powertrain. A powertrain geometry model is produced by CATIA and its FE model is made by MSC/Patran. A vibration mode analysis and a running mode analysis are experimentally implemented. After getting a satisfied MAC value by doing a correlation about a measured mode analysis value and analyzed value through MSC/Nastran software, all components are assembled through MSC/ADAMS software which is a dynamic analysis tool. We can predict the vibration of brackets which is the last points to occur the force of the engine combustion by analyzing the combustion force produced by engine mechanism.

A analysis on the Sound of Passenger Cars by Sound Metrics (음질 지수를 이용한 자동차 실내 소음의 분석)

  • 이해승;변언섭;강구태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.1114-1119
    • /
    • 2001
  • Previously, we have analyzed Vehicle interior noise by dBA based analysis. However, dBA based analysis can not describe the various sound phenomenon that consumer hear. Sound quality matrics can describe various sound phenomenon that dBA based analysis could not explain. In this paper, we will demonstrate the difference of between dBA based analysis and real sound feeling, and analyze sound examples by sound metrics and Principle Component Analysis. In this way we can analyze vehicle interior noise more effectively.

  • PDF

Test on the Effect of Elastic Wheel from the viewpoint of Noise and Vibration of Subway Vehicle (방은차륜의 소음진동 저감효과 시험)

  • 유원희;문경호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.64-68
    • /
    • 1998
  • 본 연구의 목적은 수도권 지하철차량의 소음과 진동에 방음차륜(또는 탄성차륜)이 어느 정도의 효과를 가져오는가를 평가하기 위한 것이다. 실차시험을 통하여 일체차륜이 장착된 차량과 방음차륜이 장착된 차량의 차내소음 및 차체진동을 비교하여 보았다. 그 결과 방음차륜은 지하철차량의 소음과 진동에 효과가 있음을 알 수 있었다. 그러나 실제 적용은 소음과 진동 이외에도 여러 가지 측면에서의 검토가 이루어져야만 가능할 것이다.

  • PDF