• Title/Summary/Keyword: Vehicle Image Tracking

Search Result 155, Processing Time 0.029 seconds

A survey of traffic monitoring systems based on image analysis (영상 분석에 기반한 교통 모니터링 시스템에 관한 조사)

  • Lee Dae-Ho;Park Young-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.9 s.351
    • /
    • pp.69-79
    • /
    • 2006
  • A number of researches on vision-based traffic monitoring system have been carried out. Most of traffic monitoring schemes belong to one of two categories: analyzing of entire traffic scene and examining of local region. However, the proposed methods suffer from severe performance deterioration when applied in different operating conditions because of the loss of robustness. This paper is aimed at surveying various methods proposed and analyzing the advantages and disadvantages of these methods. Also we propose and investigate appropriate approaches to solve the problems in specific applications.

FPGA-DSP Based Implementation of Lane and Vehicle Detection (FPGA와 DSP를 이용한 실시간 차선 및 차량인식 시스템 구현)

  • Kim, Il-Ho;Kim, Gyeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.727-737
    • /
    • 2011
  • This paper presents an implementation scheme of real-time lane and vehicle detection system with FPGA and DSP. In this type of implementation, defining the functionality of each device in efficient manner is of crucial importance. The FPGA is in charge of extracting features from input image sequences in reduced form, and the features are provided to the DSP so that tracking lanes and vehicles are performed based on them. In addition, a way of seamless interconnection between those devices is presented. The experimental results show that the system is able to process at least 15 frames per second for video image sequences with size of $640{\times}480$.

Implementation of Virtual Instrumentation based Realtime Vision Guided Autopilot System and Onboard Flight Test using Rotory UAV (가상계측기반 실시간 영상유도 자동비행 시스템 구현 및 무인 로터기를 이용한 비행시험)

  • Lee, Byoung-Jin;Yun, Suk-Chang;Lee, Young-Jae;Sung, Sang-Kyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.9
    • /
    • pp.878-886
    • /
    • 2012
  • This paper investigates the implementation and flight test of realtime vision guided autopilot system based on virtual instrumentation platform. A graphical design process via virtual instrumentation platform is fully used for the image processing, communication between systems, vehicle dynamics control, and vision coupled guidance algorithms. A significatnt ojective of the algorithm is to achieve an environment robust autopilot despite wind and an irregular image acquisition condition. For a robust vision guided path tracking and hovering performance, the flight path guidance logic is combined in a multi conditional basis with the position estimation algorithm coupled with the vehicle attitude dynamics. An onboard flight test equipped with the developed realtime vision guided autopilot system is done using the rotary UAV system with full attitude control capability. Outdoor flight test demonstrated that the designed vision guided autopilot system succeeded in UAV's hovering on top of ground target within about several meters under geenral windy environment.

Development of an Improved Geometric Path Tracking Algorithm with Real Time Image Processing Methods (실시간 이미지 처리 방법을 이용한 개선된 차선 인식 경로 추종 알고리즘 개발)

  • Seo, Eunbin;Lee, Seunggi;Yeo, Hoyeong;Shin, Gwanjun;Choi, Gyeungho;Lim, Yongseob
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.35-41
    • /
    • 2021
  • In this study, improved path tracking control algorithm based on pure pursuit algorithm is newly proposed by using improved lane detection algorithm through real time post-processing with interpolation methodology. Since the original pure pursuit works well only at speeds below 20 km/h, the look-ahead distance is implemented as a sigmoid function to work well at an average speed of 45 km/h to improve tracking performance. In addition, a smoothing filter was added to reduce the steering angle vibration of the original algorithm, and the stability of the steering angle was improved. The post-processing algorithm presented has implemented more robust lane recognition system using real-time pre/post processing method with deep learning and estimated interpolation. Real time processing is more cost-effective than the method using lots of computing resources and building abundant datasets for improving the performance of deep learning networks. Therefore, this paper also presents improved lane detection performance by using the final results with naive computer vision codes and pre/post processing. Firstly, the pre-processing was newly designed for real-time processing and robust recognition performance of augmentation. Secondly, the post-processing was designed to detect lanes by receiving the segmentation results based on the estimated interpolation in consideration of the properties of the continuous lanes. Consequently, experimental results by utilizing driving guidance line information from processing parts show that the improved lane detection algorithm is effective to minimize the lateral offset error in the diverse maneuvering roads.

Multi-Object Tracking Algorithm for Vehicle Detection (차량 검출을 위한 다중객체추적 알고리즘)

  • Lee, Geun-Hoo;Kim, Gyu-Yeong;Park, Hong-Min;Park, Jang-Sik;Kim, Hyun-Tae;Yu, Yun-Sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.816-819
    • /
    • 2011
  • The image recognition system using CCTV camera has been introduced to minimize not only loss of life and property but also traffic jam in the tunnel. In this paper, multi-object detection algorithm is proposed to track multi vehicles. The proposed algorithm is to detect multi cars based on Adaboost and to track multi vehicles to use template matching. As results of simulations, it is shown that proposed algorithm is useful for tracking multi vehicles.

  • PDF

A Study on Implementation of an Intelligent Video Surveillance System for Effective Education Method of Image Processing (효율적인 영상 처리 교육방법을 위한 지능형 영상 감시 시스템 구현에 관한 연구)

  • Park, Ho-Sik
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.2 no.1
    • /
    • pp.84-88
    • /
    • 2010
  • Recently, it is essential to have the system which can track down and identity the random object in the space in which security is a high priority. Due to the fact that we mentioned above, in this paper. We suggest the intelligent video surveillance system effective image-process-education in this paper. The experiment was conducted to check and track down the entering vehicle. And, Pan-Tilt-Zoom camera was used to obtain the enlarged image of the object while a vehicle was making stop in target area. As a result, the experiment has shown the data as following. When the object is in motion, success rate is 97.4%, while success rate is 91% when the object is motionless. By using the suggested system, effective image-process-education is should be achieved because the students who participate in the class can have simultaneous access to the system for real time image data and camera control.

  • PDF

Algorithm of Generating Adaptive Background Modeling for crackdown on Illegal Parking (불법 주정차 무인 자동 단속을 위한 환경 변화에 강건한 적응적 배경영상 모델링 알고리즘)

  • Joo, Sung-Il;Jun, Young-Min;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.6
    • /
    • pp.117-125
    • /
    • 2008
  • The Object tracking by real-time image analysis is one of the major concerns in computer vision and its application fields. The Object detection process of real-time images must be preceded before the object tracking process. To achieve the stable object detection performance in the exterior environment, adaptive background model generation methods are needed. The adaptive background model can accept the nature's phenomena changes and adapt the system to the changes such as light or shadow movements that are caused by changes of meridian altitudes of the sun. In this paper, we propose a robust background model generation method effective in an illegal parking auto-detection application area. We also provide a evaluation method that judges whether a moving vehicle stops or not. As the first step, an initial background model is generated. Then the differences between the initial model and the input image frame is used to trace the movement of object. The moving vehicle can be easily recognized from the object tracking process. After that, the model is updated by the background information except the moving object. These steps are repeated. The experiment results show that our background model is effective and adaptable in the variable exterior environment. The results also show our model can detect objects moving slowly. This paper includes the performance evaluation results of the proposed method on the real roads.

  • PDF

Design of Small Optical Tracker for Use in the Proving Ground (시험장 환경에 적합한 소형 광학추적기 설계)

  • Park, Sanghyun
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.3
    • /
    • pp.224-231
    • /
    • 2020
  • An optical tracking plays an important role for measurement operation, as it is responsible for low altitude measurements that are difficult to obtain with radar systems. Since the existing optical tracking systems have not been developed in the proving ground itself so far, it is difficult to modify them to fit the environment of the proving ground. Also, they are designed as a vehicle-mounted type, so there is a limitation in selecting an optimal site. The in-house developed small optical tracking system is designed with a simple configuration to overcome these shortcomings and makes it possible for operators to operate the system at any place in the proving ground. In addition, there has been a need of developing small optical trackers by ourselves to be prepared for future research so that artificial intelligence (AI) can be applied to the optical tracking systems. In this paper, we described the design concept of the small optical tracker, the configuration of the components to implement the basic tracking function, and showed the results of the simulation to set the configuration of the equipment according to the characteristics of the flight targets.

Development of Video-Detection Integration Algorithm on Vehicle Tracking (트래킹 기반 영상검지 통합 알고리즘 개발)

  • Oh, Jutaek;Min, Junyoung;Hu, Byungdo;Hwang, Bohee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5D
    • /
    • pp.635-644
    • /
    • 2009
  • Image processing technique in the outdoor environment is very sensitive, and it tends to lose a lot of accuracy when it rapidly changes by outdoor environment. Therefore, in order to calculate accurate traffic information using the traffic monitoring system, we must resolve removing shadow in transition time, Distortion by the vehicle headlights at night, noise of rain, snow, and fog, and occlusion. In the research, we developed a system to calibrate the amount of traffic, speed, and time occupancy by using image processing technique in a variety of outdoor environments change. This system were tested under outdoor environments at the Gonjiam test site, which is managed by Korea Institute of Construction Technology (www.kict.re.kr) for testing performance. We evaluated the performance of traffic information, volume counts, speed, and occupancy time, with 4 lanes (2 lanes are upstream and the rests are downstream) from the 16th to 18th December, 2008. The evaluation method performed as based on the standard data is a radar detection compared to calculated data using image processing technique. The System evaluation results showed that the amount of traffic, speed, and time occupancy in period (day, night, sunrise, sunset) are approximately 92-97% accuracy when these data compared to the standard data.

Vision-based Target Tracking for UAV and Relative Depth Estimation using Optical Flow (무인 항공기의 영상기반 목표물 추적과 광류를 이용한 상대깊이 추정)

  • Jo, Seon-Yeong;Kim, Jong-Hun;Kim, Jung-Ho;Lee, Dae-Woo;Cho, Kyeum-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.267-274
    • /
    • 2009
  • Recently, UAVs (Unmanned Aerial Vehicles) are expected much as the Unmanned Systems for various missions. These missions are often based on the Vision System. Especially, missions such as surveillance and pursuit have a process which is carried on through the transmitted vision data from the UAV. In case of small UAVs, monocular vision is often used to consider weights and expenses. Research of missions performance using the monocular vision is continued but, actually, ground and target model have difference in distance from the UAV. So, 3D distance measurement is still incorrect. In this study, Mean-Shift Algorithm, Optical Flow and Subspace Method are posed to estimate the relative depth. Mean-Shift Algorithm is used for target tracking and determining Region of Interest (ROI). Optical Flow includes image motion information using pixel intensity. After that, Subspace Method computes the translation and rotation of image and estimates the relative depth. Finally, we present the results of this study using images obtained from the UAV experiments.