• Title/Summary/Keyword: Vehicle Hood

Search Result 31, Processing Time 0.028 seconds

A study on the way to improve strength of LTV's FRP structures by optimizing laminated structure (전술차량 FRP 구조물 적층 구조 최적화를 통한 강도개선 방안 연구)

  • Kim, Seon-Jin;Park, Jin-Won;Kim, Sung-Gon;Kang, Tae-Woo;Shin, Cheol-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.468-476
    • /
    • 2019
  • This paper presents the means of improving the strength of LTV's FRP structure for resolve and prevent quality problems. LTV secures enough kerb weight by applying FRP materials at hood and rear van assembly. However, because of FRP's inherent limitations, many initial quality problems such as crack at connections have occurred. Moreover, hood assy' is concerned about fall of endurance, because hood assy' have operated in abnormal condition. Therefore, this study executes lamination structure optimizations of FRP structure for improving bending strength. As a results, hood and rear van's bending strength at connections is improved 8.1 times and 1.5 times, respectively. Also hood assy's plate secures endurance life and improve 1.7 times of critical load about abnormal operating conditions through 1.4 times improvement of bending strength.

A Study on the Quality Deviation of Passenger Cars using the Robust Design (강건 설계 기법을 이용한 승용차의 품질 산포에 관한 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.110-113
    • /
    • 2006
  • This paper describes the development process of body and full vehicle for reduced idle vibration through the data level of frequency and sensitivity. The vibration mode map is used to separate body structure modes from resonance of engine idle nm and steering system. This paper describes the analysis approach process to reduce the variation of uncertainties for idle vibration performance at initial design stage. The robust design method is performed to increase the stabilization performance under vehicle vibration. It is used to predict the effects of the stiffness deviation according to the spot welding condition of the body structure. The tolerance associated with hood over slam bumper is analyzed for the quality deviation of the moving system in full vehicle. And the glass sealant stiffness and weight difference is considered for the deviation characteristic. The design guideline is suggested considering sensitivity about body and full vehicle by using mother car at initial design stage. It makes possible to design the good NVH performance and save vehicles to be used in tests. These improvements can lead to shortening the time needed to develop better vehicles.

  • PDF

Design of the Full-Scale Fire Safety Evaluation Facility for Railroad Vehicle Fire (철도차량 실대형 화재안전 성능평가 장치 설계)

  • Yoo, Yong-Ho;Kim, Heung-Youl
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.222-225
    • /
    • 2008
  • To prove a lot of technical difficulties related to the safety management of a railroad fire effectively, we design for the full-scale fire test facility of the railroad vehicle. It will be consist of major 3 part - duct system with smoke cleaning system, measuring section and gas analysis system. The CFD simulation was also carried out to design of the hood and duct system optimization. The results will be help for basic research of the railroad fire safety.

  • PDF

A study on influence of vehicle interior noise according to design parameters of thermoplastic turbo charger intake hose (열가소성 플라스틱 흡기 터보차져호스의 설계 변수에 따른 차량 실내 소음에 미치는 영향에 관한 연구)

  • Jin, Yong-Sun;Youn, Jee-Young;Lee, Choon-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.367-368
    • /
    • 2012
  • In resent years, engineering thermoplastics represent a means for designers to integrate parts, facilitate assembly, reduce weight and lower the costs of their parts to improve the fuel efficiency and competitiveness of the cars. Thermoplastic turbo charger intake hose is one of most sophisticated application in thermoplastics under the hood. Used as part of weight & cost reduction and performance improvement program, thermoplastic turbo charger intake hose has been developed as rubber and metal replacement. For optimized product, NVH performance is a important criteria while keeping same durability required with current system. Though a number of studies have been conducted on the resonator hose and its analytical models, the most of studies were focused on transmission loss itself. This paper presents contribution of vehicle interior noise according to design parameters like profile, bellows type, bellows position, material characteristic. And we will review the design guidance for optimized product of thermoplastic turbo charger intake hose.

  • PDF

An Optimal Design of a Pedestrian Safety System Using a Design Scenario (설계방법론을 이용한 보행자 보호 시스템의 최적설계)

  • Yun, Yong Won;Park, Gyung Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.1019-1027
    • /
    • 2014
  • Vehicle-into-pedestrian traffic accidents show a very high mortality rate compared to their frequency of occurrence. Throughout the world, governments and insurance companies tend to establish and implement new safety standards for pedestrian protection. In order to improve the performance of pedestrian protection, the Korean government has evaluated the pedestrian safety of vehicles under the Korea New Car Assessment Program (K-NCAP) since 2007. The pedestrian protection performance has improved gradually, but it remains insufficient. A pedestrian protection system consisting of a hood lift system and a pedestrian airbag can be a solution to pedestrian safety. A pedestrian airbag design procedure based on a newly defined design scenario is introduced to reduce the head injury criterion of pedestrians. The proposed design scenario is discussed from a practical viewpoint and applied to manufacture pedestrian protection systems.

Studies on the Cooling Performance of Front End Module for Pedestrian Protection (보행자 보호용 프론트 엔드 모듈(FEM)의 냉각성능에 관한 연구)

  • Shin, Yoon-Hyuk;Kim, Sung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.67-72
    • /
    • 2012
  • Novel Front End Module(FEM) with improved pedestrian protection is very important to reduce the severity of pedestrian injury. The FEM needs to have enough space from hood to absorb the energy from any pedestrian collision. In this study, the cooling performance of the FEM to cool the engine was investigated under 25% height reduction. The results indicated that the cooling performance analysis was about 86% level compared to that of the conventional FEM. Also, good qualitative agreement between CFD predictions and experimental measurements was found. This FEM needs the cooling performance enhancement for changed air flow path at the frontal part of vehicle. Therefore, we showed an improved performance using air guide setup and shape modification under the high load condition.

Experimental Study of the Non-Uniform Mean Flow at the Front of a Radiator in Engine Room (엔진룸내 방열기 전단면 유동 불균일도 측정에 관한 연구)

  • 류명석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.72-79
    • /
    • 1996
  • The recent trend of higher output engines with more auxiliary parts is resulting in greater heat generation in the engine compartment. In order to maximize the heat dissipation and eliminate the inefficient flow in the engine compartment, it is necessary to understand the flow field under the hood. In this respect, experimental study as well as numerical analysis should be conducted. The automated measuring system was constructed to obtain three dimensional mean flow data with high accuracy. The measurements have been made on a vehicle with a steady incoming air flow. The result shows that there exists a high degree of non-uniformity in the mean flow velocity at the front of radiator.

  • PDF

C]RASH ANALYSIS OF AUTO-BODY STRUCTURES CONSIDERING THE STRAIN-RATE HARDENING EFFECT

  • Kang, W.J.;Huh, H.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • The crashworthiness of vehicles with finite element methods depends on the geometry modeling and the material properties. The vehicle body structures are generally composed of various members such as frames, stamped panels and deep-drawn parts from sheet metals. In order to ensure the impact characteristics of auto-body structures, the dynamic behavior of sheet metals must be examined to provide the appropriate constitutive relation. In this paper, high strain-rate tensile tests have been carried out with a tension type split Hopkinson bar apparatus specially designed for sheet metals. Experimental results from both static and dynamic tests with the tension split Hopkinson bar apparatus are interpolated to construct the Johnson-Cook and a modified Johnson-Cook equation as the constitutive relation, that should be applied to simulation of the dynamic behavior of auto-body structures. Simulation of auto-body structures has been carried out with an elasto-plastic finite element method with explicit time integration. The stress integration scheme with the plastic predictor-elastic corrector method is adopted in order to accurately keep track of the stress-strain relation for the rate-dependent model accurately. The crashworthiness of the structure with quasi-static constitutive relation is compared to the one with the rate-dependent constitutive model. Numerical simulation has been carried out for frontal frames and a hood of an automobile. Deformed shapes and the Impact energy absorption of the structure are investigated with the variation of the strain rate.

  • PDF

Studies on the Performance Evaluation of Downsized High-efficiency Cooling Module (높이 축소형 고효율 냉각모듈의 성능 평가에 관한 연구)

  • Jung, Jung-Hun;Shin, Yoon-Hyuk;Park, Sung-Wook;Jeong, Sun-An;Kim, Sung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.61-67
    • /
    • 2011
  • The cooling module needs enough space (or distance) from hood to absorb the energy from any pedestrian collision. Downsized cooling module for pedestrian protection is important to reduce the severity of pedestrian injury. When a vehicle collision happens, the downsized cooling module is required to reduce the risk of injury to the upper legs of adults and the heads of children. In this study, the performance of cooling module to cool the engine was investigated under 25% height reduction. The heat dissipation and pressure drop characteristics have been experimentally studied with the variation of coolant flow rate, air inlet velocity and A/C operation ON/OFF for the downsized cooling module. The results indicated that the cooling performance was about 94% level compared to that of the conventional cooling module. Therefore, we checked that the cooling module had good performance, and expected that the cooling module could meet the same cooling performance as conventional cooling module through optimization of components efficiency.

Numerical Study on Aerodynamic Lift on Windshield Wiper of High-Speed Passenger Vehicles (자동차 고속 주행시 와이퍼 부상현상에 대한 수치해석 연구)

  • Lee, Seung-Ho;Lee, Sung-Won;Hur, Nahm-Keon;Choi, Woo-Nyoung;Sul, Jin-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • In the present study, a three-dimensional CFD simulation on aerodynamic lift acting on windshield wiper blades was performed to improve the wiping performance of a vehicle moving at a high speed. To predict the reliable flow characteristics around the windshield wiper system, the computational domain included the full vehicle model with detailed geometry of wiper blades in the wind tunnel. From the numerical results, the drag and lift coefficients of wiper blade were obtained for the performance of windshield wiper. With this aerodynamic characteristics of windshield wiper, the effects of wiping angles and hood tip angle on the wiping performance of the windshield wiper were evaluated.