• Title/Summary/Keyword: Vehicle Engine Oil

Search Result 84, Processing Time 0.029 seconds

Safety Estimation of Engine Lubrication System using Tilting Test Rig (Tilting Test Rig를 이용한 엔진 윤활 시스템 안정성 평가)

  • 윤정의;전문수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.1-6
    • /
    • 2002
  • Engine lubrication system is generally affected by vehicle driving conditions, which are composed of acceleration, braking deceleration and accelerating during cornering. The major reason is due to the oil pan system in which oil is directly influenced by inertia farce caused by vehicle driving conditions. Therefore, to confirm safety of engine lubrication system inertia farce effects are also considered in the developing state. For the purpose, we have carried the engine tilting tests using ourselves made test rig. Verifying the test results we also measured the inertia effects on the engine lubrication system using the circular tuning and slalom test with vehicle. Through the comparison study between two kinds of results we obtained that the engine tilting test rig was very useful to confirm the safety evaluation of engine lubrication system.

Quantitative Analysis of Fuel in Engine Oil (엔진오일 내 연료성분 정량분석)

  • Lim, Young-Kwan;Kim, Jiyeon;Na, Yong-Gyu;Kim, Jong-Ryeol
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.714-719
    • /
    • 2017
  • The contaminated engine oil by fuel can intimidate driver safety due to vehicle problems such as engine abrasion, fire and sudden unintended acceleration. In this study, we investigate various functional properties of the engine oil contaminated with fuel. The test results indicated that the engine oil contaminated with fuel had relatively low values of the flash point, pour point, density, kinematic viscosity and cold cranking simulator. Furthermore, a four ball test suggested that the contaminated engine oil increased wear scar due to the poor lubricity. Moreover, SIMDIST (simulated distillation) using ASTM D2887 was applied to analyze fuel characteristics in an engine oil. The SIMDIST analysis result showed a lower carbon number, and the fuel was detected at an earlier retention time than that of using engine oil in chromatogram. Also, it is possible to quantitatively analyze for fuel contents in the engine oil. The SIMDIST method for the diagnosis of oil conditions can be used whether the fuel was involved or not, instead of analyzing other physical properties that require various analytical instruments, large volumes of oil samples, and long analysis time.

A study of friction properties of the automotive engine oils (자동차 엔진오일의 마찰특성에 관한 연구)

  • 강석춘;김종호;조원호;정근우
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.85-93
    • /
    • 1991
  • Engine oil of the vehicle is very important to reduce friction and wear of the moving parts as long as possible without deterioration. As the technique of engine design and manufacturing improves, the performance of engine was increased greatly with the improvement of the quality of engine oil. All the additives and formulations skill of engine oil produced in our country are imported from foreign country. So it is necessary to study the basic knowledge of the mechanism of friction and wear of engine oil for the development of our own formula and additives. From this research, the basic mechanism of tribology and the change of oil properties were studied with a home made oil and two foreign oils by bench and engine test and laboratory works.

  • PDF

A Study on Friction Force Reduction of Moving Parts of Engine Generator for Range Extended Electric Vehicle (RE-EV용 엔진 발전기의 구동 부품의 마찰력 저감에 관한 연구)

  • Rha, Wan Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.160-164
    • /
    • 2014
  • Recently, there has been an active study about friction force of moving parts for automotive. This study is development and evaluation of oil pockets for journal bearing and tappet valve for range extended electric vehicle. Specially, oil pockets are effect on friction force depend on pitch, size, depth. In this study, fine oil pocket was formed using by etched texturing on the journal bearing and tappet valve. And oil pocket analyzed by SEM and friction force test was carried out by tensile tester. Finally, in this study, it was suggested by round and plane part which journal besring and tappet valve.

1998 Future Directions (Engine Oil, Moter Oil)

  • Chai, Joseph
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.3-43
    • /
    • 1998
  • Technical and business transformations are reshaping the business of Diesel engine builders, Diesel lubricant marketers and additive companies. Key issues facing engine builders and end users under these transformations include: -Emission regulations -Vehicle operating costs -Evolving business environments With these challenges come opportunities. For equipment builders and lubricant marketers, these include: -Lubricants meeting global performance requirements -High value lubricant applications -Profitable new businesses

  • PDF

The study on performance of characteristics in engine oil by vehicle driving (차량 운행에 따른 엔진오일의 성능특성 평가 연구)

  • Lee, Joung-Min;Lim, Young-Kwan;Jung, Choong-Sub;Kim, Ye-Eun;Han, Kwan-Wook;Na, Byung-Ki
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.237-244
    • /
    • 2013
  • The engine oil is used for lubrication of various internal combustion engines. Recently, the vehicle and engine oil manufacture usually guarantee for oil change over 15000~20000 km mileage, but the most of driver usually change engine oil every 5000 km driving in korea. It can cause to raise environmental contamination by used engine oil and increase the cost of driving by frequently oil change. In this study, we investigate the various physical properties such as flash point, pour point, kinematic viscosity, cold cranking simulator characteristics, total acid number, four-ball test and concentration of metal component for fresh engine oil and used engine oil after real vehicle driving (5000 km, 10000 km). The result showed that the total acid number, wear scar diameter by four-ball test, Fe and Cu had increased than fresh engine oil, but 2 kind of used oil (5000 km and 10000km) had similar physical values and concentration of metal component.

The SIMDIST (Simulated Distillation) Analysis of Distributing Engine Oil (국내 유통 엔진오일 고온모사증류시험 분석)

  • Lim, Young-Kwan;Kim, Jiyeon;Kim, Jong-Ryeol;Ha, Jong-Han
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.632-637
    • /
    • 2017
  • The vehicle lubricant occupies upto 35% in a total lubricant market and engine oil occupies upto 77% in the vehicle lubricant market in Korea. A suitable quality management of the circulating engine oil is necessary for driver and engine protection. But, KS and synthetic engine oil products (involved over 30% synthetic oil) are exempt to any quality management under Petroleum and Alternative Fuel Business Act. It is also known that synthetic oils such as PAO (poly alpha olefin) have excellent properties and performance like anti-wear, varnish control and oxidation stability than those of mineral oils. For this reason, PAO has been used for an engine oil, rotary screw and reciprocating compressor in addition to heavy duty and other extreme service applications. In this study, our research group analyzed the chromatogram pattern for the mineral oil, PAO and mineral oil involved a typical ratio of PAO using SIMDIST (simulated distillation). In the SIMDIST chromatogram, the mineral oil showed a broad peak, while PAO showed a sharp typical peak. Also the oil with a large viscosity grade exhibited a long retention time due to the heavy molecular weight and high boiling point. In particular, the blended mineral oil with 20% PAO sample showed a distinctly different pattern compared to that of using the conventional mineral oil. For monitoring PAO contents in distributing engine oils, we analyzed the SIMDIST for 27 kinds of engine oils which were popularly sold in Korea. The analytic results indicate that all kinds of engine oils showed that PAO contents were below 20% in engine oil products. Moreover, the PAO titled product was found to have a small amount of PAO. Thus, we conclude that the related laws for the proper quality management of synthetic oils are needed to be established.

A Study on Flow Characteristics in Lubrication System of Manual Transmission in a Commercial Vehicle (상용차용 수동변속기 윤활시스템의 유동특성에 관한 연구)

  • Yun, Ji-Hun;Yi, Chung-Soeb;Suh, Jeong-Se;Song, Chul-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.40-46
    • /
    • 2012
  • In this study, numerical analysis was conducted to understand the flow characteristics of lubrication system in a manual transmission installed in a commercial vehicle. Also, the analysis was conducted with the purpose of improving the heat and lubricative condition of the transmission. Discharging flow rates on each oil hole outlet according to various engine rotating speed and the length of oil hole branch was calculated. In conclusion, as engine rotating speed is high and the length of oil hole branch is long, the discharging flow rate is high by virtue of the centrifugal force. In addition, this study proposed data for optimal design of lubrication system in manual transmission for a commercial vehicle.

The study on Physicochemical Properties of vehicle Engine Oil in Korea (국내 자동차용 엔진오일의 물리·화학적 특성연구)

  • Kim, Shin;Kim, Jae-Kon;Yim, Eui-Soon;Lim, Youn-Sung;Na, Byung-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.194-201
    • /
    • 2015
  • A lubricant used in the transport sector have been developed for the purpose of improving vehicle performance. To improve the engine oil for some terrible conditions, various studies have been conducted to improve vehicle performance. There are limitations in development of lubricant for the economic point, but various additives have beed developed in the technical point. Recently, government tried to prohibit reckless use of additives in base oil because of the environmental issues. The institutionalized quality standards of the additives has been estabilished. In this study, physicochemical properties and environmental effect of vehicle engine oils in domestic sector were investigated.

Effect of the Properties of Diesel Engine Oil and Aging on Exhaust Gases and DPF (경유엔진용 윤활유의 성상 및 열화가 배출가스 및 후처리 장치에 미치는 영향 연구)

  • Kim, JeongHwan;Kim, KiHo;Lee, JungMin
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.292-299
    • /
    • 2018
  • The objective of this research is to investigate the impact of engine oil aging on PM(Particulate Matter), exhaust gases, and DPF. It is widely known that the specification of a lubricant and its consumption in an ICE considerably influences the release of regulated harmful emissions under normal engine operating conditions. Considering DPF clogging phenomena associated with lubricant-derived soot/ash components, a simulated aging mode is designed for DPF to facilitate engine dynamometer testing. A PM/ash accumulation cycle is developed by considering real-world engine operating conditions for the increment of engine oil consumption and natural DPF regeneration for ash accumulation. The test duration for DPF aging is approximately 300 h with high- and low-SAPs engine oils. Detailed engine lubricant properties of new and aged oils are analyzed to evaluate the effect of engine oil degradation on vehicle mileage. Furthermore, physical and chemical analyses are performed using X-CT, ICP, and TGA/DSC to quantify the engine oil contribution on the PM composition. This is achieved by sampling with various filters using specially designed PM sampling equipment. Using high SAPs engine oil causes more PM/ash accumulation compared with low SAPs engine oils and this could accelerate fouling of the EGR in the engine, which results in an increase in harmful exhaust gas emissions. These test results on engine lubricants under operating conditions will assist in the establishment of regulated and unregulated toxic emissions policies and lubricant quality standards.