• Title/Summary/Keyword: Vehicle Dynamic State

Search Result 168, Processing Time 0.026 seconds

Vibration Analysis of Pears in Packaged Freight Using Finite Element Method (유한요소법을 이용한 골판지 포장화물내 배의 진동해석)

  • Kim M. S.;Jung H. M.;Kim K. B.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.6 s.107
    • /
    • pp.501-507
    • /
    • 2004
  • Fruits we subjected to complex dynamic stresses in the transportation environment. During a long journey from the production area to markets, there is always some degree of vibration present. Vibration inputs are transmitted from the vehicle through the packaging to the fruit. Inside, these cause sustained bouncing of fruits against each other and container wall. These steady state vibration input may cause serious fruit injury, and this damage is particularly severe whenever the fruit inside the package is free to bounce, and is vibrated at its resonant frequency. The determination of the resonant frequencies of the fruit may help the packaging designer to determine the proper packaging system providing adequate protection for the fruit, and to understand the complex interaction between the components of fruit when they relate to expected transportation vibration inputs. The vibration characteristics of the pears in corrugated fiberboard container in transit were analyzed using FEM (finite element method) modeling, and the FEM modeling approach was first validated by comparing the results obtained from simulation and experiment for the pear in the frequency range 3 to 150 Hz and acceleration level of 0.25 G-rms and it was found that between simulated and measured frequencies of the pears have a relatively good agreement. It was observed that the fruit and vegetables in corrugated fiberboard container could be analyzed by finite element method. As the elastic modulus of the cushion materials of corrugated fiberboard pad and tray cup decreased, the first frequencies of upper and lower pears increased and the peak acceleration decreased.

The Evaluation for Running Safety of Incheon International Airport Railway EMU (인천국제공항철도 전동차의 주행안전성 평가)

  • Hong, Yong-Ki;You, Won-Hee;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.619-625
    • /
    • 2007
  • The dynamic characteristic test result of electric rail car which is operated in Incheon International Airport Railroad is described in this paper. Express train in Incheon International Airport Railroad drives at 120km/h first in the country and derailment coefficient was measured for empty car and full-loaded car respectively. The measurement result of derailment coefficient, a key safety indicator about derailment, of empty car was higher than full-loaded car and both were lower than 0.8. The railway state wasn't good in operated section where is serviced about 80eh and derailment coefficient also increased. Horizontal pressure was below 2.1 ton at empty car and below 2.4 ton at full-loaded car. The electric rail car in Incheon International Airport Railroad has been confirmed it's running safety at 120km/h by the measurement of derailment coefficient. But the way of assessing applied in this paper has demerits such as complication of test method, difficulty for measurement device installation and high cost. Therefore the method which is simple to measure and can certify vehicle's safety even when service driving has to be researched.

A Study on the Resistance Performance and Flow Pattern of High Speed Planing Hull using CFD (전산유체계산을 통한 고속 활주선의 저항성능 및 유동분포 해석)

  • Park, Kyurin;Kim, Dong Jin;Kim, Sun Young;Rhee, Shin Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.23-33
    • /
    • 2019
  • Unmanned Surface Vehicle (USV) is being developed to do maritime survey and maritime surveillance at Korea Research Institute of Ships & Ocean engineering (KRISO). The goal is that USV should be operated at the maximum speed of 45 knots and it should be operated at sea state 4. Therefore the planing hull of USV should be excellent in resistance performance and manoeuvring performance. It is needed to check its performance using Experimental Fluid Dynamics (EFD), Computational Fluid Dynamics (CFD) or analytic method before designing the hull. In this study, resistance performance was analyzed by EFD and CFD. EFD with heave and pitch was performed at high speed towing system in Seoul National University. CFD was performed using SNUFOAM based on openFOAM with dynamic mesh to calculate running attitudes. The results of CFD were compared with EFD results. The results of CFD were resistance, running attitudes and wave height. The flow distribution and pressure distribution were also analyzed. The results of numerical resistance was under estimated than EFD. Even though the results of CFD have a slight limitation, it can be successfully used to estimate the resistance performance of planing hull. In addition it can be used as a supplement for EFD results.

Estimation of Maneuverability of Underwater Vehicles with Ahead Propeller by the Vertical Planar Motion Mechanism Test (VPMM 시험을 통한 선수부에 프로펠러를 갖는 수중운동체의 조종성능 추정)

  • Shin, Myung-Sub;Kim, Dong-Hwi;Kim, Yagin;Hwang, Jong-Hyon;Baek, Hyung-Min;Kim, Sung-Jae;Park, Sang-Jun;Choi, Young-Myung;Park, Hongrae;Kim, Eun-Soo
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.168-178
    • /
    • 2022
  • In this study, the resistance test, the vertical static angle of the attack test and VPMM test will be conducted to estimate the maneuverability of underwater vehicles with ahead propeller. The vertical static test will be conducted within the range of -40deg to 40deg, to investigate the cross-flow drag at high incidence angles. The tests will be conducted by dividing the propeller rotation into a case in which the propeller rotates at a specific rpm, and a case in which the propeller rotates naturally, according to the towing speed. Hydrodynamic coefficients of vertical direction will be estimated by the captive model tests. Additionally, the vertical dynamic stability index based on estimated hydrodynamic coefficients will be calculated and the impact of the propeller revolution state on the index will be investigated. The results are expected to be used as reference test data for underwater vehicles with ahead propeller.

The Method for Online Estimating Utilization Rate of Motorway Service Area Under the V2I Data Condition (V2I 데이터 Online 고속도로 휴게소 이용률 추정 방법)

  • Chang, Hyunho;Lee, Jinsoo;Yoon, Byoungjo
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.548-559
    • /
    • 2019
  • Purpose: Analysis method of V2I data driven motorway service area usage behavior to cope with manpower survey. Method: Segmentation of traveling state group and boundary using the distribution characteristics of traveling speed data of individual vehicles. Result: As a result of the verification, the use rate of resting places in lunchtime surged, and the boundary between the distribution status of the traffic speed data was clearly or unclear. Conclusion: The effect of the cost reduction is big because it can cope with the use of rest area survey by manpower and there is no limit in the time and space range of investigation. The dynamic utilization rate of each time sequence, such as a service area/drowsiness shelter/simple service area, with a V2I system, can be calculated. Identify illegal parking on highway section. Identify the unexpected situation in the road section. Identify the real-time service area utilization rate and congestion information.

Evaluation of Damping Properties on Suspension Bridge Using Extended Kalman Filter (확장형 칼만필터를 이용한 현수교의 감쇠성능 평가)

  • Park, Dong-Uk;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.89-96
    • /
    • 2011
  • The damping ratio as an index of bridge vibration could be considered as one of the important dynamic characteristics of a suspension bridge. But estimating of damping ratio on an existing suspension bridge under ambient vibration condition could be a laborious task. Moreover, it is not simple to directly distinguish aerodynamic damping and friction damping from apparent damping. According to previous studies, the aerodynamic damping properties can be linearly affected by wind speed level, and apparent damping ratio can be affected by amplitude of vibration. Therefore, in this article, the relationships among damping ratio, wind speed level and amplitude of acceleration were studied for separating extract aerodynamic damping and friction damping from apparent damping. Damping ratios on Sorok Bridge, a suspension bridge which is a located in Go-Heung, Korea, were estimated by two different methods as using Hilbert transform and extended Kalman filter which were well known as effective estimation methods for non-linear state. It was possible to distinguish aerodynamic damping and friction damping from apparent damping using averaged normal components of wind speed, RMQ values of acceleration, and estimated damping ratios from wind-induced vibration responses and vehicle loading responses.

Vibration Characteristics of the Fruit and Vegetables during Transportation (I) - Vibration Charateristics of the Pear by Experimental Analysis - (유통중 청과물의 진동 특성 연구 (I) - 실험적 해석에 의한 배의 진동특성 -)

  • Kim, Man-Soo;Jung, Hyun-Mo;Kim, Ghi-Seok;Park, Chung-Gil
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.2
    • /
    • pp.175-183
    • /
    • 2003
  • Fruit and vegetables are subjected to complex dynamic stresses in the transportation environment. During a long journey from the production area to markets, there is always some degree of vibration present. Vibration inputs are transmitted from the vehicle through the packaging to the fruit. Inside, these cause sustained bouncing of fruits against each other and container wall. These steady state vibration input may cause serious fruit injury, and this damage is particularly severe whenever the fruit inside the package is free to bounce, and is vibrated at its resonance frequency. The determination of the resonance frequencies of the fruit and vegetables may help the packaging designer to determine the proper packaging system providing adequate protection for the fruit, and to understand the complex interaction between the components of fruit when they relate to expected transportation vibration inputs. Instrumentation and technologies are described for determining the vibration response characteristics of the fruits with frequency range 3 to 150 Hz. The computer program for controlling the vibration exciter and the function generator and for measuring the vibration response characteristics of the fruits was developed. The resonance frequency of the pear ranged from 64.5 to 72.2 Hz and the amplitude at resonance was between 1.78 and 2.21 G-rms. The resonance frequency and amplitude at resonance decreased with the increase of the sample mass, and they were slightly affected by mechanical properties such as bioyield deformation and rupture deformation. Regression analysis was performed among the relatively high correlated parameters from the results of correlation coefficient analysis.

  • PDF

Calculation of Deflection Using the Acceleration Data for Concrete Bridges (가속도 계측 자료를 이용한 콘크리트 교량의 처짐 산정)

  • Yun, Young Koun;Ryu, Hee Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.92-100
    • /
    • 2011
  • This paper describes a numerical modeling for deflection calculation using the natural frequency response that is measured acceleration response for concrete bridges. In the formulation of the dynamic deflection, the change amounts and the transformed responses about six kinds of free vibration responses are defined totally. The predicted response can be obtained from the measured acceleration data without requiring the knowledge of the initial velocity and displacement information. The relationship between the predicted response and the actual deflection is derived using the mathematical modeling that is induced by the process of a acceleration test data. In this study, in order to apply the proposed response predicted model to the integration scheme of the natural frequency domain, the Fourier Fast Transform of the deflection response is separated into the frequency component of the measured data. The feasibility for field application of the proposed calculation method is tested by the mode superposition method using the PSC-I bridges superstructures under several cases of moving load and results are compared with the actually measured deflections using transducers. It has been observed that the proposed method can asses the deflection responses successfully when the measured acceleration signals include the vehicle loading state and the free vibration behavior.