• Title/Summary/Keyword: Vehicle Distance Recognition

Search Result 70, Processing Time 0.026 seconds

Long Distance Vehicle Recognition and Tracking using Shadow (그림자를 이용한 원거리 차량 인식 및 추적)

  • Ahn, Young-Sun;Kwak, Seong-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.251-256
    • /
    • 2019
  • This paper presents an algorithm for recognizing and tracking a vehicle at a distance using a monocular camera installed at the center of the windshield of a vehicle to operate an autonomous vehicle in a racing. The vehicle is detected using the Haar feature, and the size and position of the vehicle are determined by detecting the shadows at the bottom of the vehicle. The region around the recognized vehicle is determined as ROI (Region Of Interest) and the vehicle shadow within the ROI is found and tracked in the next frame. Then the position, relative speed and direction of the vehicle are predicted. Experimental results show that the vehicle is recognized with a recognition rate of over 90% at a distance of more than 100 meters.

Vehicle-logo recognition based on the PCA

  • Zheng, Qi;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.429-431
    • /
    • 2012
  • Vehicle-logo recognition technology is very important in vehicle automatic recognition technique. The intended application is automatic recognition of vehicle type for secure access and traffic monitoring applications, a problem not hitherto considered at such a level of accuracy. Vehicle-logo recognition can improve Vehicle type recognition accuracy. So in this paper, introduces how to vehicle-logo recognition. First introduces the region of the license plate by algorithm and roughly located the region of car emblem based on the relationship of license plate and car emblem. Then located the car emblem with precision by the distance of Hausdorff. On the base, processing the region by morphologic, edge detection, analysis of connectivity and pick up the PCA character by lowing the dimension of the image and unifying the PCA character. At last the logo can be recognized using the algorithm of support vector machine. Experimental results show the effectiveness of the proposed method.

A Vehicle Tracking Algorithm Focused on the Initialization of Vehicle Detection-and Distance Estimation (초기 차량 검출 및 거리 추정을 중심으로 한 차량 추적 알고리즘)

  • 이철헌;설성욱;김효성;남기곤;주재흠
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1496-1504
    • /
    • 2004
  • In this paper, we propose an algorithm for initializing a target vehicle detection, tracking the vehicle and estimating the distance from it on the stereo images acquired from a forward-looking stereo camera mounted on a road driving vehicle. The process of vehicle detection extracts road region using lane recognition and searches vehicle feature from road region. The distance of tracking vehicle is estimated by TSS correlogram matching from stereo Images. Through the simulation, this paper shows that the proposed method segments, matches and tracks vehicles robustly from image sequences obtained by moving stereo camera.

Development of Infrared Telemeter for Autonomous Orchard Vehicle (과수원용 차량의 자율주행을 위한 적외선 측거 장치개발)

  • 장익주;김태한;이상민
    • Journal of Biosystems Engineering
    • /
    • v.25 no.2
    • /
    • pp.131-140
    • /
    • 2000
  • Spraying operation is one of the most essential in an orchard management and it is also hazardous to human body. for automatic and unmanned spraying , an autonomous travelling vehicle is demanded. In this study, a telemeter was developed using infrared beam which could detect trunks and obstacles measure distance and direction from the vehicle travelling in the orchard. The telemeter system was composed of two infrared LED transmitters and receivers, a beam scanning device for continuous object detection , two rotary encoders for angle detector, and a beam level controller for uneven soil surface. The detected distance and direction signal s were sent to personal computer which made for the system display the angular and distance measurements through I/O board. According to a field test in an apple farm, the system detected up to 10m distance under 12 V of transmitted beam intensity, however, it was recommended that the proper beam transmit intensity be 7 v at the 10 m distance, because of the negative effect to human body at 12 V. The error rate of this system was 0.92 % when the actual distance was compared to measured one. The system was feasible at the small error rate. The developed telemeter system was an important part for autonomous travelling vehicle provided the real time object recognition . A direction control system could be constructed suing the system. It is expected that the system could greatly contribute to the development of autonomous farm vehicle.

  • PDF

Driving Vehicle Detection and Distance Estimation using Vehicle Shadow (차량 그림자를 이용한 주행 차량 검출 및 차간 거리 측정)

  • Kim, Tae-Hee;Kang, Moon-Seol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.8
    • /
    • pp.1693-1700
    • /
    • 2012
  • Recently, the warning system to aid drivers for safe driving is being developed. The system estimates the distance between the driver's car and the car before it and informs him of safety distance. In this paper, we designed and implemented the collision warning system which detects the car in front on the actual road situation and measures the distance between the cars in order to detect the risk situation for collision and inform the driver of the risk of collision. First of all, using the forward-looking camera, it extracts the interest area corresponding to the road and the cars from the image photographed from the road. From the interest area, it extracts the object of the car in front through the analysis on the critical value of the shadow of the car in front and then alerts the driver about the risk of collision by calculating the distance from the car in front. Based on the results of detecting driving cars and measuring the distance between cars, the collision warning system was designed and realized. According to the result of applying it in the actual road situation and testing it, it showed very high accuracy; thus, it has been verified that it can cope with safe driving.

Underwater Robot Localization by Probability-based Object Recognition Framework Using Sonar Image (소나 영상을 이용한 확률적 물체 인식 구조 기반 수중로봇의 위치추정)

  • Lee, Yeongjun;Choi, Jinwoo;Choi, Hyun-Teak
    • The Journal of Korea Robotics Society
    • /
    • v.9 no.4
    • /
    • pp.232-241
    • /
    • 2014
  • This paper proposes an underwater localization algorithm using probabilistic object recognition. It is organized as follows; 1) recognizing artificial objects using imaging sonar, and 2) localizing the recognized objects and the vehicle using EKF(Extended Kalman Filter) based SLAM. For this purpose, we develop artificial landmarks to be recognized even under the unstable sonar images induced by noise. Moreover, a probabilistic recognition framework is proposed. In this way, the distance and bearing of the recognized artificial landmarks are acquired to perform the localization of the underwater vehicle. Using the recognized objects, EKF-based SLAM is carried out and results in a path of the underwater vehicle and the location of landmarks. The proposed localization algorithm is verified by experiments in a basin.

Pattern Recognition Using 2D Laser Scanner Shaking (2D 레이저 스캐너 흔듦을 이용한 패턴인식)

  • Kwon, Seongkyung;Jo, Haejoon;Yoon, Jinyoung;Lee, Hoseung;Lee, Jaechun;Kwak, Sungwoo;Choi, Haewoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.138-144
    • /
    • 2014
  • Now, Autonomous unmanned vehicle has become an issue in next generation technology. 2D Laser scanner as the distance measurement sensor is used. 2D Laser scanner detects the distance of 80m, measured angle is -5 to 185 degree. Laser scanner detects only the plane, but using motor swings. As a result, traffic signs detect and analyze patterns. Traffic signs when driving at low speed, shape of the detected pattern is very similar. By shaking the laser scanner, traffic signs and other obstacles became clear distinction.

Hierarchical Object Recognition Algorithm Based on Kalman Filter for Adaptive Cruise Control System Using Scanning Laser

  • Eom, Tae-Dok;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.496-500
    • /
    • 1998
  • Not merely running at the designated constant speed as the classical cruise control, the adaptive cruise control (ACC) maintains safe headway distance when the front is blocked by other vehicles. One of the most essential part of ACC System is the range sensor which can measure the position and speed of all objects in front continuously, ignore all irrelevant objects, distinguish vehicles in different lanes and lock on to the closest vehicle in the same lane. In this paper, the hierarchical object recognition algorithm (HORA) is proposed to process raw scanning laser data and acquire valid distance to target vehicle. HORA contains two principal concepts. First, the concept of life quantifies the reliability of range data to filter off the spurious detection and preserve the missing target position. Second, the concept of conformation checks the mobility of each obstacle and tracks the position shift. To estimate and predict the vehicle position Kalman filter is used. Repeatedly updated covariance matrix determines the bound of valid data. The algorithm is emulated on computer and tested on-line with our ACC vehicle.

  • PDF

Signal Processing for Speech Recognition in Noisy Environment (잡음 환경에서 음성 인식을 위한 신호처리)

  • Kim, Weon-Goo;Lim, Yong-Hoon;Cha, Il-Whan;Youn, Dae-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.73-84
    • /
    • 1992
  • This paper studies noise subtraction methods and distance measures for speech recognition in a noisy environment, and investigates noise robustness of the distance measures applied to the problem of isolated word recognition in white Gaussian and colored noise (vehicle noise) environments. Noise subtraction methods which can be used as a pre-processor for the speech recognition system, such as the spectral subtraction method, autocorrelation subtraction method, adaptive noise cancellation and acoustic beamforming are studied, and distance measures such and Log Likelihood Ratio ($d_{LLR}$), cepstral distance measure ($d_{CEP}$), weighted cepstral distance measure ($d_{WCEP}$), spectral slope distance measure ($d_{RPS}$) and cepstral projection distance measure ($d_{CP},\;d_{BCP},\;d_{WCP},\;d_{BWCP}$) are also investigated. Testing of the distance measures for speaker-dependent isolated word recognition in a noisy environment indicate that $d_{RPS}\;and\;d_{WCEP}$ which weigh higher order cepstral coefficients more heavily give considerable performance improvement over $d_{CEP}and\;d_{LLR}$. In addition, when no pre-emphasis is performed, the recognizer can maintain higher performance under high noise conditions.

  • PDF

A Study on the Evaluation Method of ACC Test Using Monocular Camera (단안카메라를 활용한 ACC 시험평가 방법에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.43-51
    • /
    • 2020
  • Currently, the second level of the six stages of self-driving technology, as defined by SAE, is commercialized, and the third level is preparing for commercialization. The purpose of ACC is to be evaluated as a system useful for preventing and preventing accidents by minimizing driver fatigue through longitudinal speed control and relative distance control of the vehicle. In this regard, for the study of safety assessment methods in the practical environment of ACC. Distance measurement method using monocular camera and data acquisition equipment such as DGPS are utilized. Based on the evaluation scenario considering the domestic road environment proposed by the preceding study, the relative distance obtained from equipment such as DPGS and the relative distance using a monocular camera in the actual test is verified by comparing and analyzing the safety assessment. The comparison by scenario results showed a minimum error rate of 3.83% in Scenario 1 and a maximum of 14.61% in Scenario 6. The cause of the maximum error is that the lane recognition is not accurate in the camera image and irregular operation conditions such as rushing in or exiting the surrounding area from the walkway. It is expected that safety evaluation using a monocular camera will be possible for other ADAS systems in the future.