• 제목/요약/키워드: Vehicle Detection Systems

검색결과 481건 처리시간 0.023초

통계적 특징 기반 SVM을 이용한 야간 전방 차량 검출 기법 (Night Time Leading Vehicle Detection Using Statistical Feature Based SVM)

  • 정정은;김현구;박주현;정호열
    • 대한임베디드공학회논문지
    • /
    • 제7권4호
    • /
    • pp.163-172
    • /
    • 2012
  • A driver assistance system is critical to improve a convenience and stability of vehicle driving. Several systems have been already commercialized such as adaptive cruise control system and forward collision warning system. Efficient vehicle detection is very important to improve such driver assistance systems. Most existing vehicle detection systems are based on a radar system, which measures distance between a host and leading (or oncoming) vehicles under various weather conditions. However, it requires high deployment cost and complexity overload when there are many vehicles. A camera based vehicle detection technique is also good alternative method because of low cost and simple implementation. In general, night time vehicle detection is more complicated than day time vehicle detection, because it is much more difficult to distinguish the vehicle's features such as outline and color under the dim environment. This paper proposes a method to detect vehicles at night time using analysis of a captured color space with reduction of reflection and other light sources in images. Four colors spaces, namely RGB, YCbCr, normalized RGB and Ruta-RGB, are compared each other and evaluated. A suboptimal threshold value is determined by Otsu algorithm and applied to extract candidates of taillights of leading vehicles. Statistical features such as mean, variance, skewness, kurtosis, and entropy are extracted from the candidate regions and used as feature vector for SVM(Support Vector Machine) classifier. According to our simulation results, the proposed statistical feature based SVM provides relatively high performances of leading vehicle detection with various distances in variable nighttime environments.

영상을 기반 교통 파라미터 추출에 관한 연구 (An Approach to Video Based Traffic Parameter Extraction)

  • 욱매;김용득
    • 전자공학회논문지SC
    • /
    • 제38권5호
    • /
    • pp.42-51
    • /
    • 2001
  • 차량검출은 교통량 관측을 위해서 필요한 가장 기본적인 요소이다. 영상을 기반으로 한 교통정보 추출 시스템은 다른 방식을 이용하는 시스템들과 비교했을 때 몇 가지 두드러진 장점을 가지고 있다. 그러나, 영상기반 시스템에서는 영상에 포함된 그림자가 차량검출의 정확도를 저해하는 요소로 작용하는 데, 특히 이동중인 차량에 의해서 발생하는 활성 그림자는 심각한 성능저하를 야기할 수 있다. 본 논문에서는 차량검출과 그림자 영향 제거를 위해서 배경 빼기와 에지 검출을 결합한 새로운 접근방법을 제안하였다. 제안한 방법은 노변의 지형지물에 의해서 발생하는 비활성 그림자가 크게 증가하는 상황에서도, 98[%]이상의 차량검출 정확도를 나타내었다. 본 논문에서 제안한 차량검출 방법을 기반으로 하여, 차량 추적, 차량 계수, 차종 분류, 그리고 속도 측정을 수행하여 각 차선의 부하를 나타내는 데 사용되는 차량 흐름과 관련된 여러 가지 교통정보를 추출하였다.

  • PDF

합성곱 신경망 기반 야간 차량 검출 방법 (Night-time Vehicle Detection Method Using Convolutional Neural Network)

  • 박웅규;최연규;김현구;최규상;정호열
    • 대한임베디드공학회논문지
    • /
    • 제12권2호
    • /
    • pp.113-120
    • /
    • 2017
  • In this paper, we present a night-time vehicle detection method using CNN (Convolutional Neural Network) classification. The camera based night-time vehicle detection plays an important role on various advanced driver assistance systems (ADAS) such as automatic head-lamp control system. The method consists mainly of thresholding, labeling and classification steps. The classification step is implemented by existing CIFAR-10 model CNN. Through the simulations tested on real road video, we show that CNN classification is a good alternative for night-time vehicle detection.

무선 센서 네트워크 기반의 차량 검지 시스템을 위한 교통신호제어 기법 (Traffic Signal Control Scheme for Traffic Detection System based on Wireless Sensor Network)

  • 홍원기;심우석
    • 제어로봇시스템학회논문지
    • /
    • 제18권8호
    • /
    • pp.719-724
    • /
    • 2012
  • A traffic detection system is a device that collects traffic information around an intersection. Most existing traffic detection systems provide very limited traffic information for signal control due to the restriction of vehicle detection area. A signal control scheme determines the transition among signal phases and the time that a phase lasts for. However, the existing signal control scheme do not resolve the traffic congestion effectively since they use restricted traffic information. In this paper, a new traffic detection system with a zone division signal control scheme is proposed to provide correct and detail traffic information and decrease the vehicle's waiting time at the intersection. The traffic detection system obtains traffic information in a way of vehicle-to-roadside communication between vehicles and sensor network. A new signal control scheme is built to exploit the sufficient traffic information provided by the proposed traffic detection system efficiently. Simulation results show that the proposed signal control scheme has 121 % and 56 % lower waiting time and delay time of vehicles at an intersection than other fuzzy signal control scheme.

미약한 시각 특징과 Haar 유사 특징들의 강화 연결에 의한 도로 상의 실 시간 차량 검출 (Real Time On-Road Vehicle Detection with Low-Level Visual Features and Boosted Cascade of Haar-Like Features)

  • 샴 아디카리;유현중;김형석
    • 제어로봇시스템학회논문지
    • /
    • 제17권1호
    • /
    • pp.17-21
    • /
    • 2011
  • This paper presents a real- time detection of on-road succeeding vehicles based on low level edge features and a boosted cascade of Haar-like features. At first, the candidate vehicle location in an image is found by low level horizontal edge and symmetry characteristic of vehicle. Then a boosted cascade of the Haar-like features is applied to the initial hypothesized vehicle location to extract the refined vehicle location. The initial hypothesis generation using simple edge features speeds up the whole detection process and the application of a trained cascade on the hypothesized location increases the accuracy of the detection process. Experimental results on real world road scenario with processing speed of up to 27 frames per second for $720{\times}480$ pixel images are presented.

스테레오 비전센서를 이용한 선행차량 감지 시스템의 개발 (Development of a Vision Sensor-based Vehicle Detection System)

  • 황준연;홍대건;허건수
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.134-140
    • /
    • 2008
  • Preceding vehicle detection is a crucial issue for driver assistance system as well as for autonomous vehicle guidance function and it has to be performed with high reliability to avoid any potential collision. The vision-based preceded vehicle detection systems are regarded promising for this purpose because they require little infrastructure on a highway. However, the feasibility of these systems in passenger car requires accurate and robust sensing performance. In this paper, an preceded vehicle detection system is developed using stereo vision sensors. This system utilizes feature matching, epipoplar constraint and feature aggregation in order to robustly detect the initial corresponding pairs. After the initial detection, the system executes the tracking algorithm for the preceded vehicles including a leading vehicle. Then, the position parameters of the preceded vehicles or leading vehicles can be obtained. The proposed preceded vehicle detection system is implemented on a passenger car and its performances is verified experimentally.

영상기반 교통정보 추출 알고리즘에 관한 연구 (A Study On the Image Based Traffic Information Extraction Algorithm)

  • 하동문;이종민;김용득
    • 대한교통학회지
    • /
    • 제19권6호
    • /
    • pp.161-170
    • /
    • 2001
  • 차량검출은 교통량 관측(모니터링)을 위해서 필요한 가장 기본적인 요소이다. 영상을 기반으로 한 교통정보추출 시스템은 다른 방식을 이용하는 시스템들과 비교했을 때 몇 가지 두드러진 장점을 가지고 있다. 그러나 영상기반 시스템에서는 영상에 포함된 그림자가 차량검출의 정확도를 저해하는 요소로 작용하는 데, 특히 이동 중인 차량에 의해서 발생하는 환성 그림자는 심각한 성능저하를 야기할 수 있다. 본 논문에서는 차량검출과 그림자 영향 제거를 위해서 배경 빼기와 에지 검출을 결합한 새로운 접근방법을 제안하였다. 제안한 방법은 노변의 지형지물에 의해서 발생하는 비활성 그림자가 크게 증가하는 상황에서도, 98(%)이상의 차량검출 정확도를 나타내었다. 본 논문에서 제안한 차량검출 방법을 기반으로 하여, 차량 추적, 차량 계수, 차종 분류, 그리고 속도 측정을 수행하여 각 차로의 부하를 나타내는 데 사용되는 차량 흐름과 관련된 여러 가지 교통정보를 추출하였다.

  • PDF

센서 오차를 고려한 기뢰제거용 무인잠수정의 유도방법 (A Study on Guidance Methods of Mine Disposal Vehicle Considering the Sensor Errors)

  • 변승우;김동희;임종빈;한종훈;박도현
    • 대한임베디드공학회논문지
    • /
    • 제12권5호
    • /
    • pp.277-286
    • /
    • 2017
  • This paper introduces mathematical modelling and control algorithm of expendable mine disposal vehicle. This vehicle has two longitudinal thrusters, one vertical thruster and internal mass moving system which can control pitch rate. Also, the vehicle has an optical camera and forward looking sonar for underwater mine detection and classification. The vehicle is controlled via an optical cable connected with operating console on the mother ship. We describe the vehicle's 6DOF dynamic model and controller which can track the desired trajectory for the way-point tracking. These simulation results shows guidance and maneuvering performance which has other sensor data or not.

Semi-Supervised Learning Based Anomaly Detection for License Plate OCR in Real Time Video

  • Kim, Bada;Heo, Junyoung
    • International journal of advanced smart convergence
    • /
    • 제9권1호
    • /
    • pp.113-120
    • /
    • 2020
  • Recently, the license plate OCR system has been commercialized in a variety of fields and preferred utilizing low-cost embedded systems using only cameras. This system has a high recognition rate of about 98% or more for the environments such as parking lots where non-vehicle is restricted; however, the environments where non-vehicle objects are not restricted, the recognition rate is about 50% to 70%. This low performance is due to the changes in the environment by non-vehicle objects in real-time situations that occur anomaly data which is similar to the license plates. In this paper, we implement the appropriate anomaly detection based on semi-supervised learning for the license plate OCR system in the real-time environment where the appearance of non-vehicle objects is not restricted. In the experiment, we compare systems which anomaly detection is not implemented in the preceding research with the proposed system in this paper. As a result, the systems which anomaly detection is not implemented had a recognition rate of 77%; however, the systems with the semi-supervised learning based on anomaly detection had 88% of recognition rate. Using the techniques of anomaly detection based on the semi-supervised learning was effective in detecting anomaly data and it was helpful to improve the recognition rate of real-time situations.

A New Vehicle Detection Method based on Color Integral Histogram

  • Hwang, Jae-Pil;Ryu, Kyung-Jin;Park, Seong-Keun;Kim, Eun-Tai;Kang, Hyung-Jin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제8권4호
    • /
    • pp.248-253
    • /
    • 2008
  • In this paper, a novel vehicle detection algorithm is proposed that utilizes the color histogram of the image. The color histogram is used to search the image for regions with shadow, block symmetry, and block non-homogeneity, thereby detecting the vehicle region. First, an integral histogram of the input image is computed to decrease the amount of required computation time for the block color histograms. Then, shadow detection is performed and the block symmetry and block non-homogeneity are checked in a cascade manner to detect the vehicle in the image. Finally, the proposed scheme is applied to both still images taken in a parking lot and an on-road video sequence to demonstrate its effectiveness.