• Title/Summary/Keyword: Vehicle Detection Systems

Search Result 481, Processing Time 0.023 seconds

Night Time Leading Vehicle Detection Using Statistical Feature Based SVM (통계적 특징 기반 SVM을 이용한 야간 전방 차량 검출 기법)

  • Joung, Jung-Eun;Kim, Hyun-Koo;Park, Ju-Hyun;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.7 no.4
    • /
    • pp.163-172
    • /
    • 2012
  • A driver assistance system is critical to improve a convenience and stability of vehicle driving. Several systems have been already commercialized such as adaptive cruise control system and forward collision warning system. Efficient vehicle detection is very important to improve such driver assistance systems. Most existing vehicle detection systems are based on a radar system, which measures distance between a host and leading (or oncoming) vehicles under various weather conditions. However, it requires high deployment cost and complexity overload when there are many vehicles. A camera based vehicle detection technique is also good alternative method because of low cost and simple implementation. In general, night time vehicle detection is more complicated than day time vehicle detection, because it is much more difficult to distinguish the vehicle's features such as outline and color under the dim environment. This paper proposes a method to detect vehicles at night time using analysis of a captured color space with reduction of reflection and other light sources in images. Four colors spaces, namely RGB, YCbCr, normalized RGB and Ruta-RGB, are compared each other and evaluated. A suboptimal threshold value is determined by Otsu algorithm and applied to extract candidates of taillights of leading vehicles. Statistical features such as mean, variance, skewness, kurtosis, and entropy are extracted from the candidate regions and used as feature vector for SVM(Support Vector Machine) classifier. According to our simulation results, the proposed statistical feature based SVM provides relatively high performances of leading vehicle detection with various distances in variable nighttime environments.

An Approach to Video Based Traffic Parameter Extraction (영상을 기반 교통 파라미터 추출에 관한 연구)

  • Yu, Mei;Kim, Yong-Deak
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.5
    • /
    • pp.42-51
    • /
    • 2001
  • Vehicle detection is the basic of traffic monitoring. Video based systems have several apparent advantages compared with other kinds of systems. However, In video based systems, shadows make troubles for vehicle detection, especially active shadows resulted from moving vehicles. In this paper, a new method that combines background subtraction and edge detection is proposed for vehicle detection and shadow rejection. The method is effective and the correct rate of vehicle detection is higher than 98% in experiments, during which the passive shadows resulted from roadside buildings grew considerably. Based on the proposed vehicle detection method, vehicle tracking, counting, classification and speed estimation are achieved so that traffic parameters concerning traffic flow is obtained to describe the load of each lane.

  • PDF

Night-time Vehicle Detection Method Using Convolutional Neural Network (합성곱 신경망 기반 야간 차량 검출 방법)

  • Park, Woong-Kyu;Choi, Yeongyu;KIM, Hyun-Koo;Choi, Gyu-Sang;Jung, Ho-Youl
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.2
    • /
    • pp.113-120
    • /
    • 2017
  • In this paper, we present a night-time vehicle detection method using CNN (Convolutional Neural Network) classification. The camera based night-time vehicle detection plays an important role on various advanced driver assistance systems (ADAS) such as automatic head-lamp control system. The method consists mainly of thresholding, labeling and classification steps. The classification step is implemented by existing CIFAR-10 model CNN. Through the simulations tested on real road video, we show that CNN classification is a good alternative for night-time vehicle detection.

Traffic Signal Control Scheme for Traffic Detection System based on Wireless Sensor Network (무선 센서 네트워크 기반의 차량 검지 시스템을 위한 교통신호제어 기법)

  • Hong, Won-Kee;Shim, Woo-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.8
    • /
    • pp.719-724
    • /
    • 2012
  • A traffic detection system is a device that collects traffic information around an intersection. Most existing traffic detection systems provide very limited traffic information for signal control due to the restriction of vehicle detection area. A signal control scheme determines the transition among signal phases and the time that a phase lasts for. However, the existing signal control scheme do not resolve the traffic congestion effectively since they use restricted traffic information. In this paper, a new traffic detection system with a zone division signal control scheme is proposed to provide correct and detail traffic information and decrease the vehicle's waiting time at the intersection. The traffic detection system obtains traffic information in a way of vehicle-to-roadside communication between vehicles and sensor network. A new signal control scheme is built to exploit the sufficient traffic information provided by the proposed traffic detection system efficiently. Simulation results show that the proposed signal control scheme has 121 % and 56 % lower waiting time and delay time of vehicles at an intersection than other fuzzy signal control scheme.

Real Time On-Road Vehicle Detection with Low-Level Visual Features and Boosted Cascade of Haar-Like Features (미약한 시각 특징과 Haar 유사 특징들의 강화 연결에 의한 도로 상의 실 시간 차량 검출)

  • Adhikari, Shyam Prasad;Yoo, Hyeon-Joong;Kim, Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.1
    • /
    • pp.17-21
    • /
    • 2011
  • This paper presents a real- time detection of on-road succeeding vehicles based on low level edge features and a boosted cascade of Haar-like features. At first, the candidate vehicle location in an image is found by low level horizontal edge and symmetry characteristic of vehicle. Then a boosted cascade of the Haar-like features is applied to the initial hypothesized vehicle location to extract the refined vehicle location. The initial hypothesis generation using simple edge features speeds up the whole detection process and the application of a trained cascade on the hypothesized location increases the accuracy of the detection process. Experimental results on real world road scenario with processing speed of up to 27 frames per second for $720{\times}480$ pixel images are presented.

Development of a Vision Sensor-based Vehicle Detection System (스테레오 비전센서를 이용한 선행차량 감지 시스템의 개발)

  • Hwang, Jun-Yeon;Hong, Dae-Gun;Huh, Kun-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.134-140
    • /
    • 2008
  • Preceding vehicle detection is a crucial issue for driver assistance system as well as for autonomous vehicle guidance function and it has to be performed with high reliability to avoid any potential collision. The vision-based preceded vehicle detection systems are regarded promising for this purpose because they require little infrastructure on a highway. However, the feasibility of these systems in passenger car requires accurate and robust sensing performance. In this paper, an preceded vehicle detection system is developed using stereo vision sensors. This system utilizes feature matching, epipoplar constraint and feature aggregation in order to robustly detect the initial corresponding pairs. After the initial detection, the system executes the tracking algorithm for the preceded vehicles including a leading vehicle. Then, the position parameters of the preceded vehicles or leading vehicles can be obtained. The proposed preceded vehicle detection system is implemented on a passenger car and its performances is verified experimentally.

A Study On the Image Based Traffic Information Extraction Algorithm (영상기반 교통정보 추출 알고리즘에 관한 연구)

  • 하동문;이종민;김용득
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.161-170
    • /
    • 2001
  • Vehicle detection is the basic of traffic monitoring. Video based systems have several apparent advantages compared with other kinds of systems. However, In video based systems, shadows make troubles for vehicle detection. especially active shadows resulted from moving vehicles. In this paper a new method that combines background subtraction and edge detection is proposed for vehicle detection and shadow rejection. The method is effective and the correct rate of vehicle detection is higher than 98(%) in experiments, during which the passive shadows resulted from roadside buildings grew considerably. Based on the proposed vehicle detection method, vehicle tracking, counting, classification and speed estimation are achieved so that traffic information concerning traffic flow is obtained to describe the load of each lane.

  • PDF

A Study on Guidance Methods of Mine Disposal Vehicle Considering the Sensor Errors (센서 오차를 고려한 기뢰제거용 무인잠수정의 유도방법)

  • Byun, Seung-Woo;Kim, Donghee;Im, Jong-Bin;Han, Jong-Hoon;Park, Do-Hyun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.5
    • /
    • pp.277-286
    • /
    • 2017
  • This paper introduces mathematical modelling and control algorithm of expendable mine disposal vehicle. This vehicle has two longitudinal thrusters, one vertical thruster and internal mass moving system which can control pitch rate. Also, the vehicle has an optical camera and forward looking sonar for underwater mine detection and classification. The vehicle is controlled via an optical cable connected with operating console on the mother ship. We describe the vehicle's 6DOF dynamic model and controller which can track the desired trajectory for the way-point tracking. These simulation results shows guidance and maneuvering performance which has other sensor data or not.

Semi-Supervised Learning Based Anomaly Detection for License Plate OCR in Real Time Video

  • Kim, Bada;Heo, Junyoung
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.113-120
    • /
    • 2020
  • Recently, the license plate OCR system has been commercialized in a variety of fields and preferred utilizing low-cost embedded systems using only cameras. This system has a high recognition rate of about 98% or more for the environments such as parking lots where non-vehicle is restricted; however, the environments where non-vehicle objects are not restricted, the recognition rate is about 50% to 70%. This low performance is due to the changes in the environment by non-vehicle objects in real-time situations that occur anomaly data which is similar to the license plates. In this paper, we implement the appropriate anomaly detection based on semi-supervised learning for the license plate OCR system in the real-time environment where the appearance of non-vehicle objects is not restricted. In the experiment, we compare systems which anomaly detection is not implemented in the preceding research with the proposed system in this paper. As a result, the systems which anomaly detection is not implemented had a recognition rate of 77%; however, the systems with the semi-supervised learning based on anomaly detection had 88% of recognition rate. Using the techniques of anomaly detection based on the semi-supervised learning was effective in detecting anomaly data and it was helpful to improve the recognition rate of real-time situations.

A New Vehicle Detection Method based on Color Integral Histogram

  • Hwang, Jae-Pil;Ryu, Kyung-Jin;Park, Seong-Keun;Kim, Eun-Tai;Kang, Hyung-Jin
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.248-253
    • /
    • 2008
  • In this paper, a novel vehicle detection algorithm is proposed that utilizes the color histogram of the image. The color histogram is used to search the image for regions with shadow, block symmetry, and block non-homogeneity, thereby detecting the vehicle region. First, an integral histogram of the input image is computed to decrease the amount of required computation time for the block color histograms. Then, shadow detection is performed and the block symmetry and block non-homogeneity are checked in a cascade manner to detect the vehicle in the image. Finally, the proposed scheme is applied to both still images taken in a parking lot and an on-road video sequence to demonstrate its effectiveness.