• Title/Summary/Keyword: Vehicle Communication Interface Module

Search Result 14, Processing Time 0.011 seconds

Design and Implementation of an Interface Module for the ETC System using Mobile Phone (휴대폰 기반 ETC시스템을 위한 인터페이스 모듈 설계 및 구현)

  • Shin Song-Ah;Yim Joe-Hong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.881-889
    • /
    • 2004
  • Using the ETC Service, it is now possible to charge a vehicle for driving pass a specific toll booth electronically, without the vehicle even having to slow down. The smart card and card reader used to collect tolls electronically have a serious problem which it dose not have a standard for the ETC system. In this paper, we suggest the ETC system using mobile phone to collect tolls efficiently instead of existing system which is consist of a Interface Module to connect between a mobile phone and OEE, a mobile phone to send the information of tollgate fees and OEE to communication with RSE of roadway in the vehicle. This primary focus of this system is the IM functions and protocol to assist of the existing mobile phone and OBE.

The Design and Implementation of IoT based Remote Control System for Active Connected Cars (능동형 커넥티드 카를 위한 IoT기반 원격제어 시스템의 설계 및 구현)

  • Lee, Yun-Seop;Jang, Mun-Seok;Choi, Sang-Bang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.703-709
    • /
    • 2019
  • This paper proposes a monitoring and remote control system, an essential part of In Vehicle Infotainment (IVI) and Human Vehicle Interface (HVI) to provide safety and convenience to a driver. The system utilizes Bluetooth for a short range communication and utilizes WCDMA for a long range communication to enhance efficiency. In this paper, an integrated controller, which integrates a CAN communication module, a Bluetooth communication module, a WCDMA communication module, is designed to control a car. Also, a remote server for managing data is designed to provide real-time monitoring and remote control for a user via smart devices. Experiment results show that all the proposed remote control, driving log, real-time monitoring, and diagnostics functions are working properly. With the proposed system, a driver can drive safely by monitoring and inspecting a car before driving via smart devices, and control conveniently by controlling a car remotely.

Remote Measurement for Automobile′s ECU Sensor Signals Using RF modules (RF모듈을 이용한 자동차 ECU 센서신호의 원격계측)

  • 이성철;서지원;권대규;방두열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1067-1070
    • /
    • 2003
  • In this paper, we present a remote measurement system for the wireless monitoring of ECU Sensor Signals of vehicle. In order to measure the ECU sensor signals, the interface circuit is designed to communicate ECU and designed terminal wirelessly according to the ISO, SAE regulation of communication protocol standard. A micro-controller 80C196KC is used for communicating ECU sensor signals. ECU sensor signals are transmitted to the RF-wireless terminal that was developed using the micro controller 80386EX. LCD, and RF-module. 80386EX software is programmed to monitor the ECU sensor signals using the Borland C++ compiler in which the half duplex method was used for the RS232 communication. The algorithms for measuring the ECU sensor signals are verified to monitor ECU state. At the same time, the information to fix the vehicle's problem can be shown on the developed monitoring software. The possibility for remote measurement of ECU sensor signals using 80386EX is also verified through the developed systems and algorithms.

  • PDF

A Study on Driver-vehicle Interface for Cooperative Driving (협력운전을 위한 운전자-차량 인터페이스 연구)

  • Yang, In-Beom
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.5
    • /
    • pp.27-33
    • /
    • 2019
  • Various technical and societal approaches are being made to realize the auto driving (AD) and cooperative driving (CD) including communication network and extended advanced driver support system is under development. In CD, it is important to share the roles of the driver and the system and to secure the stability of the driving, so a efficient interface scheme between the driver and the vehicle is required. This study proposes a research model including driver, system and driving environment considering the role and function of driver and system in CD. An efficient interface between the driver and the vehicle to cope with various driving situations on the CD using the analysis of the driving environment and the research model is also proposed. Through this study, it is expected that the proposed research model and interface scheme could contribute to CD system design, cockpit module development and interface device development.

Case Study on Engine Trouble analysis and Diagnosis Using MDA (MDA를 이용한 엔진 가속 불량 진단에 관한 연구)

  • Hwang, Sung-Wan;Cha, Suk-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.105-109
    • /
    • 2022
  • In this study, the cause of the acceleration failure of Hyundai Motor's 2.0-liter CRDi engine was analyzed. We tried to find problems through MDA (Measuring Data Analyzer) based on data such as vehicle speed, air intake, and air-fuel ratio obtained during the actual driving process. As a result, it was analyzed that the failure of the EGR valve exceeded the NOx emission standard and caused a decrease in engine output. Through this study, it is possible to reduce the time and cost of unnecessary maintenance and repair, and it is expected that a rapid cause analysis will be possible in the case of new failure diagnosis in the future.

Case Study of Intermittent Engine Hesitation Fault Diagnosis By CKPS Fault (LPI차량에서 CKPS불량으로 주행 중 간헐적인 엔진부조 현상의 고장진단)

  • Kim, Sung Mo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.6
    • /
    • pp.624-629
    • /
    • 2014
  • The purpose of this study is to carry out the task of engine hesitation which occurred intermittently in driving due to the defective CKPS of LPI vehicles. As the result of the wrong data from the equipment of D-logger, the signal error of CKPS caused the engine hesitation. We performed a study in the followings to analyze and investigate the cause effectively. First, we have investigated the control wiring harness and connector pin contact defect inspection. Second, we have inspected the defection of CKPS separately. From this study, it was found that the engine hesitation were caused by the bad durability and we have showed how to diagnosis the fault of the engine hesitation intermittently while driving. Therefore, it is determined that we have to improve the durability of the CKPS through a strict quality control and to increase the reliability.

Self-Diagnostic Signal Monitoring System of KWP2000 Vehicle ECU using Bluetooth

  • Choi, Kwang-Hun;Lee, Hyun-Ho;Lee, Young-Choon;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.132-137
    • /
    • 2004
  • On-Board Diagnostic(OBD) systems are in most cars and light trucks on the load today. During the 1970's and early 1980's manufacturers started using electronic means to control engine functions and diagnose engine problems. The CARB's diagnostic requirements to meet EPA emission standards have been designated as OBD with a goal of monitoring all of the emissions-related components, as well as the chassis, body, accessory devices and the diagnostic control network of the vehicle for proper operation. In this paper, we present a remote measurement system for the wireless monitoring of diagnosis signal and sensors output signals of ECU adopted KWP2000, united the OBD communication protocol, on OBD-compliant vehicle using the wirless communication technique of Bluetooth. In order to measure the ECU signals, the interface circuit is designed to communicate ECU and designed terminal wirelessly according to the ISO, SAE regulation of communication protocol standard. A microprocessor S3C3410X is used for communicating ECU signals. The embedded system's software is programmed to measure the ECU signals using the ARM compiler and ANCI C based on MicroC/OS kernel to communicate between bluetooth modules using bluetooth stack. The diagnostic system is developed using Visual C++ MFC and protocol stack of bluetooth for Windows environment. The self-diagnosis and sensor output signals of ECU is able to monitor using PC with bluetooth board connected in serial port of PC. The algorithms for measuring the ECU sensor output and self-diagnostic signals are verified to monitor ECU state. At the same time, the information to fix the vehicle's problem can be shown on the developed monitoring software. The possibility for remote measurement of self-diagnosis and sensor signals of ECU adopted KWP2000 in embedded system verified through the developed systems and algorithms.

  • PDF

Implementation of Lane Tracking System using a Autonomous RC Toy Car (자율주행이 가능한 무선 장난감 자동차의 차선 추적 시스템 구현)

  • Ko, Eunsang;Lee, Chang Woo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.5
    • /
    • pp.249-254
    • /
    • 2013
  • In this paper we propose nonlinear control system for automatic unmanned vehicle using a RC (Radio Controlled) car which is usually controlled by a remote controller. In the proposed system, a RC car is dissembled and reassembled with several parts enabling it to be controlled by an android mobile platform with Bluetooth communication. In our system, an android mobile smartphone is mounted on the RC car and plays an important role as an eye of the car. The proposed system automatically controls the RC car to follow a lane that we draw on the floor of our laboratory. Also, the proposed RC car system can also be controlled manually using the accelerometer sensor of a smartphone through a Bluetooth module. Our proposed system that has both manual mode and automatic mode consists of several components; a microprocessor unit, a Bluetooth serial interface module, a smartphone, a dual motor controller and a RC toy car. We are now in the development of a group driving system in which one car follows the front car that tracks a lane automatically.

Web-based Measurement of ECU Signals on Vehicle using Embedded Linux

  • Choi, Kwang-Hun;Lee, Lee;Lee, Young-Choon;Kwon, Tae-Kyu;Lee, Seong-Cheol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.138-142
    • /
    • 2004
  • In this paper, we present a new method for monitoring of ECU's sensor signals of vehicle. In order to measure the ECU's sensor signals, the interfaced circuit is designed to communicate ECU and the Embedded Linux is used to monitor communication result through Web the Embedded Linux system and this system is said "ECU Interface Part". In ECU Interface Part the interface circuit is designed to match voltage level between ECU and SA-1110 micro controller and interface circuit to communicate ECU according to the ISO, SAE communication protocol standard. Because Embedded Linux does not allow to access hardware directly in application level, anyone who wants to modify any low level hardware must develop device driver. To monitor ECU's sensor signals the most important thing is to match serial level between ECU and ECU Interface Part. It means to communicate correctly between two hardware we need to match voltage and signal level, and need to match baudrate. The voltage of SA-1110 is 0 ${\sim}$ +3.3V and ECU is 0 ${\sim}$ +12V and, ECU's communication Line K does multiple operation so, the interface circuit is used to match voltage and signal level. In Addition to ECU's baudrate is 10400bps, it's not standard baudrate in computer environment. So, we need to develop a device driver to control the interface circuit, and change baudrate. To monitor ECU's sensor signals through web there's a network socket program is working in Embedded Linux. It works as server program and manages user's connections and commands. Anyone who wants to monitor ECU's sensor signals he just only connect to Embedded Linux system with web browser then, Embedded Linux webserver will return the ActiveX webbased measurement software. It works in web browser and inits ECU, as a result it returns sensor signals through web. All the programs are developed with GCC(GNU C Compiler) and, webbased measurement software is developed with Borland C++ Builder.

  • PDF

Case Study of Intermittent Poor Acceleration Fault Diagnosis by Brake Switch Fault (브레이크 스위치 결함에 의한 간헐적인 가속불량 현상의 고장진단 사례연구)

  • Kim, Sung Mo;Jo, Haeng Deug
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.2
    • /
    • pp.203-210
    • /
    • 2015
  • This paper investigates the failure of a car with a 2.5-liter CRDi engine of the Hyundai Company. The failure is caused by intermittent poor acceleration while driving. To analyze the cause, we investigated the air intake volume, the fuel injection, and the air-fuel ratio, which were determined to be normal. The brake switch signal error was discovered while analyzing the function that limits the output of the engine. While investigating the cause, we discovered the corrosion of the pins on the connector of the brake switch. We determined that it was generated by soapy water flowing in the solar film. Therefore, the cause of the failure was the brake switch signal errors. Additionally, we determined that ECM was the normal fail-safe mode that implemented the override device for safety during normal acceleration. Based on these results, further solar film experiments must be conducted to fully elucidate the causes.