• Title/Summary/Keyword: Vehicle Bumper

Search Result 60, Processing Time 0.022 seconds

Development of Safe Hood for Pedestrian Protection (보행자 보호를 위한 안전 후드 개발)

  • Kim, T.J.;Hong, S.H.;Lee, D.H.;Han, D.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.345-346
    • /
    • 2008
  • Most pedestrian-vehicle crashes involve frontal impacts, and the vehicle front structures are responsible for most pedestrian injuries. The vehicle bumper contacts the lower legs at first. The leading edge of the hood (bonnet) strikes the proximal upper leg and finally, the head and upper torso hit the top surface of the hood or windscreen. In essence, the pedestrian wraps around the front of the vehicle until pedestrian and vehicle are traveling at the same speed. Since the hood surface is made from sheet metal, it is a relatively compliant structure and does not pose a major risk for severe head trauma. However, serious head injury can occur when the head hits a region of the hood with stiff underlying structures such as engine components. The solution is to provide sufficient clearance between the hood and underlying structures for controlled deceleration of a pedestrian's head. However, considerations of aerodynamic design and styling can make it extremely difficult to alter a vehicle's front end geometry to provide more under-hood space. In this study, the safe hood will be developed by designing new conceptual inner panel in order to decrease the pedestrian's head injuries without changing hood outer geometry.

  • PDF

3-D THERMAL-HYDRAULIC ANALYSIS FOR AIRFLOW OVER A RADIATOR AND ENGINE ROOM

  • Hsieh, C.T.;Jang, J.Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.5
    • /
    • pp.659-666
    • /
    • 2007
  • In the present study, a numerical analysis of the three-dimensional heat transfer and fluid flow for a vehicle cooling system was developed. The flow field of the engine room between the grille and radiator was analyzed. The results show that, as the airflow inlet grille angle $\alpha$ is varied from $15^{\circ}$ to $-15^{\circ}$, the air flow rate compared with $\alpha=0^{\circ}$(horizontal) changes from -11.9% to +5.1%; while the heat flux from the radiator changes from -9.2% to +4.4%. When the airflow inlet bumper angle $\beta$ is varied from $-5^{\circ}$ to $+15^{\circ}$, the heat flux from the radiator compared with $\beta=0^{\circ}$(horizontal) increases up to +4.4%. When the airflow inlet grille angle $\alpha=-15^{\circ}$ and the bumper grill angle $\beta=+15^{\circ}$, the airflow rates and heat flux compared with($\alpha=0^{\circ}$, $\beta=0^{\circ}$) can be increased to +9.5% and +7.5%, respectively. The results indicate that the optimal angles for cooling efficiency are used.

Development of a Finite Element Model for Frontal Crash Analysis of a Mid-Size Truck (중형 트럭의 정면 충돌 특성해석을 위한 유한요소 모델의 개발)

  • 홍창섭;오재윤;이대창
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.226-232
    • /
    • 2000
  • This paper develops a finite element model for studying the crashworthiness analysis of a mid-size truck. A simulation for a truck frontal crash to a rigid barrier using the model is performed with PAM-CRASH installed in super computer SP2. Full vehicle model is composed of 86467 shell elements, 165 beam elements and 98 bar elements, and 86769 nodes. The model uses four material model such as elastic, elastic-plastic(steel), rigid and elastic-plastic(rubber) material model which are in PAM-CRASH. Frame and suspension system are modeled with 28774 shell elements and 31412 nodes. Cab is modeled with 34680 shell elements and 57 beam elements, and 36254 nodes. Bumper is modeled with 2262 shell elements, and 2508 nodes. Axle, steering shaft, etc are modeled using beam or bar elements. Mounting parts are modeled using rigid bodies. Bodies are interconnected using nodal constrains or joint options. To verify the developed model, frontal crash test with 30mph velocity to a rigid barrier is carried out. In the crash test, vehicle pulse at lower part of b-pillar is measured, and deformed shapes of frame and driver seat area are photographed. Those measured vehicle pulse and photographed pictures are compared those from the simulation to verify the developed finite element model.

  • PDF

Research of Vehicles Longitudinal Adaptive Control using V2I Situated Cognition based on LiDAR for Accident Prone Areas (LiDAR 기반 차량-인프라 연계 상황인지를 통한 사고다발지역에서의 차량 종방향 능동제어 시스템 연구)

  • Kim, Jae-Hwan;Lee, Je-Wook;Yoon, Bok-Joong;Park, Jae-Ung;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.453-464
    • /
    • 2012
  • This is a research of an adaptive longitudinal control system for situated cognition in wide range, traffic accidents reduction and safety driving environment by integrated system which graft a road infrastructure's information based on IT onto the intelligent vehicle combined automobile and IT technology. The road infrastructure installed by laser scanner in intersection, speed limited area and sharp curve area where is many risk of traffic accident. The road infra conducts objects recognition, segmentation, and tracking for determining dangerous situation and communicates real-time information by Ethernet with vehicle. Also, the data which transmitted from infrastructure supports safety driving by integrated with laser scanner's data on vehicle bumper.

A Study on the Quality Deviation of Passenger Cars using the Robust Design (강건 설계 기법을 이용한 승용차의 품질 산포에 관한 연구)

  • Kim, Ki-Chang;Kim, Chan-Mook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.110-113
    • /
    • 2006
  • This paper describes the development process of body and full vehicle for reduced idle vibration through the data level of frequency and sensitivity. The vibration mode map is used to separate body structure modes from resonance of engine idle nm and steering system. This paper describes the analysis approach process to reduce the variation of uncertainties for idle vibration performance at initial design stage. The robust design method is performed to increase the stabilization performance under vehicle vibration. It is used to predict the effects of the stiffness deviation according to the spot welding condition of the body structure. The tolerance associated with hood over slam bumper is analyzed for the quality deviation of the moving system in full vehicle. And the glass sealant stiffness and weight difference is considered for the deviation characteristic. The design guideline is suggested considering sensitivity about body and full vehicle by using mother car at initial design stage. It makes possible to design the good NVH performance and save vehicles to be used in tests. These improvements can lead to shortening the time needed to develop better vehicles.

  • PDF

Steering Control for Autonomous Electric Vehicle using Magetic Fields (자기장을 이용한 자율주행 전기자동차의 조향제어)

  • Kim, Tae-Gon;Son, Seok-Jun;Ryoo, Young-Jae;Kim, Eui-Sun;Lim, Young-Cheol
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.134-141
    • /
    • 2001
  • This paper describes a method to steer an autonomous electric vehicle using magnetic fields. Magnets are embeded along the center of the road and a magneto-resistive sensor is mounted beneath the front bumper of the vehicle. As the vehicle moves along the road neural network controller controls the vehicle using measured magnetic field variation. Based on a single magnets modeling equation, we analyzed three dimensional magnetic field distributions of embeded magnets in series on the center of the road and performed a computer simulation using this results. In simulation study, straight and curved road was configured. The steering controller for the vehicle was designed using neural network and experiment was performed on the real embeded magnets using real autonomous electric vehicle. At the experiment we compensated the earth's magnetic fields and showed a good result driving an autonomous vehicle using proposed method.

  • PDF

Near-Field Analysis of Vehicle LF Antennas for Estimating the Reading Range of a Smart Key (스마트 키 인식 거리 예측을 위한 차량 LF 안테나의 Near-Field 분석)

  • Kim, Heeyoung;Byun, Gangil;Seong, Jaeyong;Jung, Hankil;Choo, Hosung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.671-677
    • /
    • 2013
  • In this paper, we propose a method of near-field analysis for vehicle LF antennas in order to estimate the accurate reading range of a smart key. The LF antenna consists of a ferrite core and a conducting wire which is coated with polyethylene for insulation, and it is mounted at the rear bumper frame of a commercial vehicle. The reading range of a smart key is measured at nine azimuthal directions distributed around the rear bumper, and then, the received power at each maximum reading range is measured by using a spectrum analyzer. The measurement shows that the maximum reading range exists between 1.38 m and 1.53 m, and the radiated power is between -83.6 dBmW and -75.0 dBmW. We further conducted EM simulation to estimate the reading range and the received power under the same condition that we applied for the measurement. The results demonstrate that an accurate reading range and received power can be achieved by simulation.

Evaluation of Occupant Protection of Van and Light Truck Vehicle (승합 및 경트럭의 탑승자 보호성능 평가)

  • Kim, Guan-Hee;Park, In-Song
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.13-19
    • /
    • 2012
  • The fatalities rate for passenger vehicles, vans, and commercial vehicles is 1.23, 1.90 and 2.46 deaths per 10,000 registered vehicles, respectively. This shows that vans and commercial vehicles are vulnerable compare to passenger vehicles. To evaluate the crashworthiness of van and Light Truck Vehicle(LTV), we carried out frontal offset crash test at 64km/h, 40% overlap as per IIHS(Insurance Institute for Highway Safety). The test result show that LTV is very poor to protect occupant at frontal crash cause there is no safety system such as airbag and pretensioner and front end length(distance from front bumper to steering wheel) is short. One of the van rated as the lowest rating even it is equipped with airbag, cause its safety cage was collapsed during the test. This result shows that the structural integrity is very important in terms of occupant protection.

A Basic Investigation on the Characteristics of Traffic Flow for the Capacity Analysis of Signalized Intersections (교차로 용량분석을 위한 교통류 특성 기초조사)

  • 이승환
    • Journal of Korean Society of Transportation
    • /
    • v.7 no.2
    • /
    • pp.89-111
    • /
    • 1989
  • This study concentrates on a basic investigation research related to some of parameters to be used for the analysis of capacity and the level of service for signalized intersections. The parameters to be studied are ideal saturation flow rate, large vehicle's passenger car equivalent(PCE) ane the lane utilization factors of through and left turn vehicles. The field data were collected at six intersections in Seoul using video cameras so as to reflect conditions in urban areas. In this study discharge headway based on a rear bumper of each vehicle was used and all the parameters were estimated using a regression technique. The findings of this research are as follows : 1. The saturation headway and saturation flow rate on a single lane with the lane width of 3.1m are 1.652 seconds and 2,180 pcphgpl. It was found that the frist 5 vehicles in the queue experience some start-up lost time. 2. It was confirmed that the new method adopted for the estimate of large vehicle's PCE gives larger PCE values than those derived from the method commonly used. 3. For the estimate of lane utilization factors of through and left turn vehicles, a relationship was established and the corresponding formulas were developed.

  • PDF

Development of a Finite Element Model for Frontal Crash Analysis of a Large-Sized Truck (대형트럭의 정면 충돌 특성해석을 위한 유한요소모델의 개발)

  • Kim, Hak-Duck;Song, Ju-Hyun;Oh, Chae-Youn
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.489-494
    • /
    • 2001
  • This paper develops a finite element model for frontal crash analysis of a large-sized truck. It is composed of 220 parts, 70,041 nodes and 69,073 elements. This paper explains only major parts' models in detail such as frame, cab, floor, and bumper which affect on crash analysis a lot. In order to prevent penetration not only at a part itself but also between parts, all contact areas are defined using type-36, self-impact type. The developed model's reliability is validated by comparing simulation and crash test results. The results used for model validation are vehicle pulses at B-pillar, and frame and deformation of frame and cab. The frontal crash simulation is performed with the same conditions as crash test. And, it is performed using PAM-CRASH installed in super-computer SP2. The developed model whose reliability is verified may be used as a base to develop a finite element model for occupant behavior and injury coefficient analysis.

  • PDF