• Title/Summary/Keyword: Vehicle Antenna

Search Result 211, Processing Time 0.026 seconds

Estimating Fatigue Life of APD Electronic Equipment for Activation of a Spaceborne X-band 2-axis Antenna (2축 짐벌식 X-band 안테나 구동용 전장품 APD 제어보드의 피로수명 평가)

  • Jeon, Young-Hyeon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • While a satellite is carried into orbit by a launch vehicle, it is exposed to the severe launch environment with random vibrations and shock. Accordingly, these vibration sources affect electronic equipment, particularly the printed circuit board (PCB) in the satellite. When the launch load impacts the PCB, it causes negative behavior. This causes perpendicular bending around the boundary of fixation points that finally leads to the failure of solder joints, lead wires, and PCB cracks. To overcome these issues, the electronic equipment design must meet reliability requirements. In this paper, Steinberg's method is used to derive allowable and maximum deflection to verify design from a life perspective concerning the control board of the Antenna Pointing Driver (APD) mounted on KOMPSAT-3.

Characteristics of Beam-tilting Slot Array Waveguide Antennas for DBS Reception (DBS 수신용 빔 틸트형 슬롯 어레이 도파관 안테나의 특성)

  • Min, Gyeong-Sik;Kim, Dong-Cheol;Arai, Hiroyuki
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.3
    • /
    • pp.140-149
    • /
    • 2002
  • This paper describes the characteristics of beam-tilting slot away waveguide antennas for mobile DBS reception. As a basic study of slotted waveguide array, design for 16 slot elements located on a broad-wall waveguide is considered. Design parameters such as slot length, space between each slot and cross slot angle of antennas with the beam-tilting characteristics are calculated by method of moments. Based on these results, the radiation waveguide antennas with 16-element $\times$16-array are designed and fabricated. The measured main beam direction angles of the fabricated antennas are 48$^{\circ}$to 50$^{\circ}$depending on the measured frequencies and it shows good agreement with prediction. The measured 3 dB beam width of elevation pattern is about 13$^{\circ}$, and the axial ratio and the gain measured at DBS band are observed 2.8 dB below and 24 dBi above, respectively. In order to evaluate a performance of the fabricated waveguide planar antenna, it is combined with the satellite tracking control system and the field performance test of antenna mounted on a mobile vehicle is carried out at highway. During the measurement, it was possible to watch television without a break signal in a driving vehicle and an excellent performance of the proposed antennas was demonstrated.

위성발사를 위한 원격측정 지상국시스템 설계에 관한 연구

  • Lee, Sung-Hee;Oh, Chang-Yul;Lee, Hyo-Keun
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.167-178
    • /
    • 2003
  • The design on the Telemetry Ground System for launch of KSLV(Korea Space Launch Vehicle) in the korean Space center has been conducted in this study. For the optimized system design, first of all, the system deployment plan reflecting the topographic and geographic environments of the space center and launch vehicle characteristics has been developed. The RF link budget analysis for the maximum tracking range, requirement for receiving subsystem including antenna subsystem, requirement for data processing subsystem are also analyzed based on the On-Board Telemetry characteristics and launch vehicle parameters. Based on those analysis, telemetry ground system containing tracking/receiving subsystem, recording subsystem and data processing subsystem, timing subsystem, calibration subsystem and monitoring and control subsystem are designed. Futhermore, the analysis for the maximum permissible data latency and communication protocol between each telemetry station and control center are conducted and the entire system is designed so that the major telemetry parameters selected to the best quality are provided in real time to the control center(RCC, RSC) for the launch mission operation.

  • PDF

Development of a GPS Receiver System for Satellite Launch Vehicles (위성발사체용 GPS 수신기 시스템의 개발)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Shin, Yong-Sul;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.929-937
    • /
    • 2008
  • A GPS receiver system utilized on satellite launch vehicles should operate normally under harsh environments as well as high-dynamic conditions. The GPS receiver system to use for range safety of KSLV(Korea Space Launch Vehicle)-I that is the first satellite launch vehicle developed by KARI(Korea Aerospace Research Institute) has been confirmed to survive under the environment of the launcher through extensive terrestrial tests including humidity, high and low temperatures, vacuum, sinusoidal and random vibrations, shocks, acceleration, EMI/EMC(Electromagnetic Interference/ Electromagnetic Compatibility), etc. Several performance tests have been also carried out in order to evaluate tracking capability and accuracy of the GPS receiver under high-dynamic conditions using a GPS signal simulator. Some lessons-learned during development of the GPS receiver system and its special characteristics compared with COTS(Commercial-Off-The-Shelf) GPS receiver systems are described in this paper.

Ku-Band RF Transceiver System Design for UAV Line-Of-Sight Datalink (무인항공기 가시선 데이터링크 Ku 대역 RF 송수신 시스템 설계)

  • Choi, Jaewon;Kim, Jihoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.46-53
    • /
    • 2014
  • In this paper, ku-band RF transceiver system is designed for the unmanned aerial vehicle(UAV) line-of-sight(LOS) datalink. The RF transceiver system is consisted of the transmitting and receiving unit, RF front-end unit, and high power amplification unit. The transmitting and receiving unit has the functions of frequency up/down converting and channel changing. The RF front-end unit has the functions of transmitting and receiving signal duplexing, antenna selection, small signal amplification, and frequency filtering excluding the receiving signal. The high power amplification unit has the functions of ku-band power amplification and transmitting power variation(High/Middle/Low/Mute). The frequency up/down converting of transmitting and receiving unit is designed by using the superheterodyne method. The RF transceiver system is designed to obtain the broadband and high linearity properties for the reliable transmission and reception of high data-rate and high speed data. Also, the channel changing function is designed to use selectively the frequency as the operation environment of UAV.

The Data Processing System Development of Telemetry Ground System for Korean Space Launch Vehicle-1 (KSLV-1의 신호 수신.처리를 위한 원격측정 지상국시스템의 자료처리시스템 개발)

  • Ma, Jin-A;Kwon, Soon-Ho;Oh, Chang-Yul;Lee, Hyo-Keun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.245-254
    • /
    • 2007
  • The on-board telemetry system of KSLV-1 transmits telemetry signal for the launch vehicle and satellite to ground telemetry system in real time. In ground telemetry system, antenna system acquires telemetry signals and transfers these to data processing system. Data processing system processes and recordes telemetry data and distributes it to each mission operator in order to monitor it the operation goes well or not. This document describes the configurations and functions of data processing system designed for efficient and appropriate processing of telemetry data.

  • PDF

Design of Roll Rate Estimator using GPS Signal for Spinning Vehicle

  • Lee, Sunyong;Jin, Mihyun;Choi, Heon Ho;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.3
    • /
    • pp.109-118
    • /
    • 2016
  • The present paper proposes a method that can estimate a roll rate of spinning vehicles utilizing GPS receivers. The proposed method analyzes a relation between received signal and correlation value and utilizes a phenomenon that received signal power that changes according to a signal incident direction affects a correlation value. That is, a roll-rate estimation method using zero crossing detection method for correlation value, which has sinusoidal periodicity according to rotations of vehicles, is proposed. A correlation value in real environments experiences a jitter so that the proposed method includes a pre-processing filter and detection threshold setting way is also considered to reduce the effect of received signal power. In order to verify the operation of the proposed method and analyze the performance, a signal generator and software-defined receiver (SDR) are designed. The signal generator generates intermediate frequency (IF) signal by taking the rotation of vehicles, antenna gain, and signal power into consideration, and a correlation value is acquired by taking the generated IF signals into consideration. Using the generated correlation value, the operation of the proposed roll rate estimation method is verified and the performance is analyzed.

A Study on the Acoustic Vibration Test of the COMS (통신해양기상위성의 음향진동시험에 관한 연구)

  • Lee, Ho-Hyung
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.69-74
    • /
    • 2010
  • As a part of development process of the COMS, an acoustic vibration test was performed in order to verify that the COMS is safe from the acoustic loads coming from the Ariane-5ECA launch vehicle when it is launched. In this paper, the acoustic vibration test preparation which was performed during the development of the COMS is explained, and through the evaluation of the test results, it was verified whether the COMS is safe from the acoustic load that the COMS will experience during the launch. Through detail evaluation of the acoustic loads on the solar array, Ka band communication payload antenna and feed, GOCI(Geo-Stationary Ocean Color Imager), MI(Meteorological Imager), it was confirmed that the COMS is safe from the acoustic loads from launch vehicle.

Creation of 3D Maps for Satellite Communications to Support Ambulatory Rescue Operations

  • Nakajima, Isao;Nawaz, Muhammad Naeem;Juzoji, Hiroshi;Ta, Masuhisa
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.23-30
    • /
    • 2019
  • A communications profile is a system that acquires information from communication links to an ambulance or other vehicle moving on a road and compiles a database based on this information. The equipment (six sets of HDTVs, fish-eye camera, satellite antenna with tracking system, and receiving power from the satellite beacon of the N-star) mounted on the roof of the vehicle, image data were obtained at Yokohama Japan. From these data, the polygon of the building was actually produced and has arranged on the map of the Geographical Survey Institute of a 50 m-mesh. The optical study (relationship between visibility rate and elevation angle) were performed on actual data taken by fish-eye lens, and simulated data by 3D-Map with polygons. There was no big difference. This 3D map system then predicts the communication links that will be available at a given location. For line-of-sight communication, optical analysis allows approximation if the frequency is sufficiently high. For non-line-of-sight communication, previously obtained electric power data can be used as reference information for approximation in certain cases when combined with predicted values calculated based on a 3D map. 3D maps are more effective than 2D maps for landing emergency medical helicopters on public roadways in the event of a disaster. Using advanced imaging technologies, we have produced a semi-automatic creation of a high-precision 3D map at Yokohama Yamashita Park and vicinity and assessed its effectiveness on telecommunications and ambulatory merits.

Current Status of Ceramic Composites Technology for Space Vehicle (우주비행체용 세라믹 복합재료 해외기술 동향)

  • Lee, Ho-Sung
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.7 no.2
    • /
    • pp.76-84
    • /
    • 2009
  • In this review an attempt is made to give the background to the current trends in foreign developments in the ceramic matrix composites for space vehicles. The lightweight and high temperature specific modulus properties of ceramic composites have continued to develop for designing advanced propulsion structures and for increasing space vehicle performances. Those applications require advanced materials with good resistance to high temperatures, to oxidation environments and to mechanical stresses. The advantages of ceramic matrix composites are the low specific weight, the high specific strength over a wide temperature ranges, and their good damage tolerance compared to tungsten, pyrographites and polycrystalline graphites. Due to these advantages ceramic matrix composites are currently used in rocket engine chamber, nozzle, solar array, radar antenna, mirror support structures, hypersonic leading edge articles, heat shields, reentry vehicle nose tips, and radiators for spacecraft. Various processes are discussed together with examples of current application so that some of the advanced technologies can be possibly applied to Korean space technology.

  • PDF