• Title/Summary/Keyword: Vehicle Accident

Search Result 903, Processing Time 0.025 seconds

Preliminary study on car detection and tracking method using surveillance camera in tunnel environment for accident detection (터널 내 유고상황 자동 판정을 위한 선행 연구: CCTV를 이용한 차량의 탐지와 추적 기법 고찰)

  • Oh, Young-Sup;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.813-827
    • /
    • 2017
  • Surveillance cameras installed in tunnels capture the various video frames effected by dynamic and variable factors. In addition, localizing and managing the cameras in tunnel is not affordable, and quality of capturing frame is effected by time. In this paper, we introduce a new method to detect and track the vehicles in tunnel by using surveillance cameras installed in a tunnel. It is difficult to detect the video frames directly from surveillance cameras due to the motion blur effect and blurring effect on lens by dirt. In order to overcome this difficulties, two new methods such as Differential Frame/Non-Maxima Suppression (DFNMS) and Haar Cascade Detector to track cars are proposed and investigated for their feasibilities. In the study, it was shown that high precision and recall values could be achieved by the two methods, which then be capable of providing practical data and key information to an automatic accident detection system in tunnels.

Simulation Analysis on Triple Collision between Wrecker, Towed Car and Driving Car (견인차-피견인차-주행차량의 3중 추돌에 관한 시뮬레이션 해석)

  • Cho, Jae-Ung;Kim, Eu-Gene;Kim, Key-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4100-4107
    • /
    • 2010
  • The wrecker truck of lift type is used to move damaged car in accident spot or to move illegal vehicle in towaway zone toward pound.. This special vehicle drives by lifting front or rear side of car with the driving type of towed car. Each car is modelled with CATIA and is simulated with FEM analysis program ANSYS. This study analyzes how dangerous is the triple collision among the wrecker-towed car-driving car as comparing with the usual collision accident with cars. It is studied how responsible is the towed car in case of crashing its back side by driving car. The influence on the driving angle of towed car by lifting wrecker is also considered.

Development of Predictive Pedestrian Collision Warning Service Considering Pedestrian Characteristics (보행자 특성을 고려한 예측형 보행자 충돌 경고 서비스 개발)

  • Ka, Dongho;Lee, Donghoun;Yeo, Hwasoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.3
    • /
    • pp.68-83
    • /
    • 2019
  • The number of pedestrian traffic accident fatalities is three times the number of car accidents in South Korea. Serious accidents are caused especially at intersections when the vehicle turns to their right. Various pedestrian collision warning services have been developed, but they are insufficient to prevent dangerous pedestrians. In this study, P2CWS is developed to warn approaching vehicles based on the pedestrians' characteristics. In order to evaluate the performance of the service, actual pedestrian data were collected at the intersection of Daejeon, and comparative analysis was carried out according to pedestrian characteristics. As a result, the performance analysis showed a higher accordance when the characteristics of the pedestrian is considered. Accordingly, we can conclude that identifying pedestrian characteristics in predicting the pedestrian crossing is important.

Influence of Police Authorities and Units on Transport Safety in the European Union Countries

  • Chervinchuk, Andrii;Pylypenko, Yevheniia;Veselov, Mykola;Pylypiv, Ruslan;Merdova, Olga
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.109-114
    • /
    • 2022
  • The article is devoted to analyzing the police influence on road safety formation. The globalization processes confirm the study's relevance, provoking population mobility and the need to increase freight traffic. The study aims to identify the factors that affect road safety and the activities of the police and the EU transport safety units. An empirical analysis using factor analysis, correlation analysis, and general scientific methods of cognition were carried out to achieve the goal. The analysis results found that the number of police officers affects road safety, but not in all countries, which confirms the importance of other factors. Based on the analysis results of the scientific literature, the factors affecting transport safety are legislative regulation, the use of innovative technologies, transport infrastructure, geography, and psycho-physical and emotional drivers factors. It has been proved that the police authorities and units cannot fully ensure transport safety in the European Union because the safety is formed by a complex of actions by the state and road users.

Research on Data-Driven Railway Risk Assessment Criteria (데이터 기반 철도 위험도평가 기준에 관한 연구)

  • Eun-Kyung Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.4
    • /
    • pp.555-562
    • /
    • 2023
  • The Railway Safety Act of 2014 strengthened the 'Railway Safety Management System' to establish autonomous safety management for railway operators and railway facility managers. Accordingly, it is required to establish and implement risk assessment and safety measures for risk management. However, the current risk assessment system is carried out at the fragmented safety management level within individual fields, which has caused difficulties in establishing and implementing risk assessment and safety measures. In addition, the technical standards of the safety management system stipulate that risk assessment of railway operators is mandatory, so standardized standards for risk assessment of railway facilities and railway vehicle maintenance are needed. Therefore, in this paper, we first verified railway risks by analyzing railway accident data for the last 10 years, and proposed a standardized framework to effectively assess and manage risks through a case study of a condition-based smart maintenance system developed based on railway vehicle maintenance data.

Behavior Analysis of Fill Slope by Vehicle Collision on Guardrail (가드레일에 차량 충돌 시 성토사면의 거동분석)

  • Park, Hyunseob;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.2
    • /
    • pp.67-74
    • /
    • 2014
  • Recently, the number of road construction is increasing by industrial development. According to this industrial tendency, the number of traffic accidents are consistently increasing due to increasing number of vehicle on the road. This is mainly because traffic accidents are occurred by various parameter such as negligence of driver, vehicle defects, state of unstable road, natural environment etc. Lane department of vehicles from guardrail is occurring frequently. This type of accident is caused by vehicle performance improvement and shape of vehicle, weak guardrail installation and maintenance. Guardrail has the purpose on prevention such as prevention of traffic accident and prevention of deviating out of road, minimizing damage of driver and vehicle by collision as well as entry into the road through guardrail. Stability evaluation test of guardrail verifies the behavior of guardrail through the crash of truck. At this time, the crash condition has 100 km/h of velocity and $15^{\circ}$ of impact angle. In the case of ground condition, filling slope condition has relatively high bearing capacity of infinite ground towards the test. Guardrail is generally installed on road of shoulder in fill slope in korea. It is possible for stability problem to deteriorate ground bearing capacity in Guardrail in fill slope. The existed study towards stability of guardrail has been carried out in the infinite ground. However, the study on the behavior of fill slope with guardrail is not performed by vehicle collision. Therefore, In this study, the numerical analysis using LS-DYNA was executed for verification on behavior of fill slope with guardrail through vehicle collision. This numerical analysis was carried out with change of embedded depth on installed guardrail post in shoulder of fill slope by vehicle collision and 8 tonf truck crash providing at NCAN (National Crash Analysis Center). As the result, displacement and stress on fill slope are decreased in accordance with the increase of embedded depth of guardrail post. Ground bearing capacity is deteriorated at depth of 450 mm form shoulder of road on fill slope.

Hazard Analysis of Autonomous Vehicle due to V2I Malfunction (V2I 오작동에 의한 자율주행자동차의 위험성 분석)

  • Ahn, Dae-ryong;Shin, Seong-geun;Baek, Yun-soek;Lee, Hyuck-kee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.6
    • /
    • pp.251-261
    • /
    • 2019
  • The importance of autonomous driving systems that utilize V2X services such as V2V(Vehicle to Vehicle) and V2I(Vehicle to Infrastructure) for safer and more comfortable driving is increasing with the recent development of autonomous vehicles. Partly autonomous vehicles based on environmental sensors have limitations for predicting and determining areas beyond the recognition distance of the mounted sensors and in response to atypical objects that are difficult to detect. Therefore, it is important to utilize the V2X service to improve the limit of sensor detection performance and to make driving safer and more comfortable. However, there may be an accident risk of autonomous vehicles due to incorrect information provided by V2X. Thus, the application of technology to prevent this needs to be considered. In this pater, we used the ISO-26262 Part3 Process and performed HARA (Hazard Analysis and Risk Assessment) to derive the risk sources of autonomous vehicles due to V2I malfunctions by using the communication between vehicles and infrastructure among V2X. We also developed ASIL ratings based on the simulations and real vehicle tests of the malfunctions of major cases of usnig V2I.

Analysis on the Effect of Vehicle Speed Change on the Vehicle Information Guide System for Pedestrian Safety (보행자 안전을 위한 차량정보안내시스템 도입에 따른 통행속도 변화에 미치는 영향 분석)

  • Kwang-Bok Jung;Yeong-YUL Kim;Jae-Yoon Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.93-102
    • /
    • 2023
  • This study conducted an effect evaluation before and after the installation of a vehicle information guidance system that provides drivers with information about vehicle speed and the presence or absence of pedestrians near pedestrian crossings. There are three types of scenarios: when no information is provided to the driver (S1), when only the vehicle driving speed is provided (S2), and when pedestrians are present on the pedestrian crossing and when both vehicle driving speeds are provided (S3). did. As a result of the survey, the speed reduction rate of the vehicle was found to be about 0.4~0.7km greater in S2 and S3 that provide information to the driver than in scenario S1. In addition, in the scenario S3, the speed reduction rate is 0.2km higher than that in the case where there are pedestrians near the pedestrian crossing, which further reduces the vehicle speed. Statistical analysis also showed that there was a difference in the speed reduction rate of the average vehicle for the three scenarios, and that the speed reduction rate was large in the presence of pedestrians.

A Study on the Prediction Models of Used Car Prices Using Ensemble Model And SHAP Value: Focus on Feature of the Vehicle Type (앙상블 모델과 SHAP Value를 활용한 국내 중고차 가격 예측 모델에 관한 연구: 차종 특성을 중심으로)

  • Seungjun Yim;Joungho Lee;Choonho Ryu
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.27-43
    • /
    • 2024
  • The market share of online platform services in the used car market continues to expand. And The used car online platform service provides service users with specifications of vehicles, accident history, inspection details, detailed options, and prices of used cars. SUV vehicle type's share in the domestic automobile market will be more than 50% in 2023, Sales of Hybrid vehicle type are doubled compared to last year. And these vehicle types are also gaining popularity in the used car market. Prior research has proposed a used car price prediction model by executing a Machine Learning model for all vehicles or vehicles by brand. On the other hand, the popularity of SUV and Hybrid vehicles in the domestic market continues to rise, but It was difficult to find a study that proposed a used car price prediction model for these vehicle type. This study selects a used car price prediction model by vehicle type using vehicle specifications and options for Sedans, SUV, and Hybrid vehicles produced by domestic brands. Accordingly, after selecting feature through the Lasso regression model, which is a feature selection, the ensemble model was sequentially executed with the same sampling, and the best model by vehicle type was selected. As a result, the best model for all models was selected as the CBR model, and the contribution and direction of the features were confirmed by visualizing Tree SHAP Value for the best model for each model. The implications of this study are expected to propose a used car price prediction model by vehicle type to sales officials using online platform services, confirm the attribution and direction of features, and help solve problems caused by asymmetry fo information between them.

Structural Analysis of PWR(pressurized water reactor) Canister for Applied Impact Force Occurring at the Moment of Falling Plumb Down Collision (추락낙하 충돌 시 가해지는 충격에 대한 경수로(PWR) 처분용기의 구조해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.2
    • /
    • pp.211-222
    • /
    • 2011
  • In this paper a structural analysis of the PWR(pressurized water reactor) canister with 102cm diameter is carried out to evaluate the structural safety of the canister for the impact force occurring at the moment of collision with the ground in the falling plumb down accident from the carriage vehicle which may happen during the canister handling at the spent nuclear fuel disposal repository. For this, a rigid body dynamic analysis of the canister is executed to compute the impact force using the commercial CAE system, RecurDyn, and a nonlinear structural analysis is performed to compute stresses and deformations occurring inside the canister for this computed impact force using the commercial FEM code, NISA. From these analysis results, the structural safety of the canister is evaluated for the falling plumb down accident from the carriage vehicle due to the inattention during the canister handling at the repository. The rigid body dynamic analysis performed assuming the canister as a rigid body shows that the canister falls plumb down to the ground in two types. And also it shows that early collision impact force is the biggest one and following impact forces decrease gradually. The height of the carriage vehicle in the repository is assumed as 5m in order to obtain the stable structural safety evaluation result. The nonlinear structural analysis of the canister is executed for the biggest early impact force. The structural analysis result of the canister shows that the structural safety of the PWR canister is not secured for the falling plumb down accident from the moving carriage vehicle because the maximum stresses occurring in the cast iron insert of canister are bigger than the yield stress of the cast iron.