• Title/Summary/Keyword: Vehicle Accident

Search Result 903, Processing Time 0.028 seconds

Effects of In-vehicle Warning Information on Drivers' Responsive Behavior (In-vehicle 교통안전 경고정보 제공에 따른 운전자 반응특성 분석)

  • Song, Tae-Jin;O, Cheol;O, Ju-Taek;Lee, Cheong-Won
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.5
    • /
    • pp.63-74
    • /
    • 2009
  • One of the effective countermeasures for preventing traffic accidents is to provide traffic safety warning information to drivers. Provision of warning information would lead to safer driving to avoid accident occurrence. This study investigated the effects of in-vehicle warning information on driver's behavior. A variety of warning information contents using text, sound, and pictograms were prepared for the field experiments. Individual vehicle speed and acceleration data, which represent quantitative drivers' behavior in response to in-vehicle warning information, were collected using differential global positioning systems (DGPS). Statistical analyses including ANOVA and Tukey's pairwise comparison were conducted. It is expected that the results could be invaluable for designing more effective warning information.

A Study of Impact Factors and Barrier Height of Compact Car Road for Decision of Barrier Type (소형차도로 방호울타리 형식선정을 위한 충돌계수 및 방호울타리 높이선정 연구)

  • Choi, Hyun-Ho;Kim, Ki-Hwan;Lee, Eui-Joon;Yi, Sang-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6D
    • /
    • pp.605-613
    • /
    • 2010
  • In this study, Impact factors are represented and barrier height of compact car road of safety barrier is suggested through the investigation of applying problems of existed standard of general car road. For this, traffic accidents analysis is performed and based on the analysis, impact vehicle weight, impact Angle, crash velocity, and barrier height are investigated. For the decision of impact angle, analysis is carried out by comparison of RISER and 2-lines expressway accidents data. Through this, higher-impact angle is suggested. Vehicle weight data of sub-compact car, small vehicle, medium and large vehicle, SUV, small truck is surveyed and analyzed. Based on the accident accumulation rate, regression analysis of vehicle weight impact and impact velocity is performed. Also, based on the cumulative rate of vehicle weight on expressways near Seoul, barrier height of compact car road is calculated. It is noted that the results of this study will be contributed to the decision of barrier type.

Development of the Algofithm for Gaussian Mixture Models based Traffic Accident Auto-Detection in Freeway (GMM(Gaussian Mixture Model)을 적용한 영상처리기법의 연속류도로 사고 자동검지 알고리즘 개발)

  • O, Ju-Taek;Im, Jae-Geuk;Yeo, Tae-Dong
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.3
    • /
    • pp.169-183
    • /
    • 2010
  • Image-based traffic information collection systems have entered widespread adoption and use in many countries since these systems are not only capable of replacing existing loop-based detectors which have limitations in management and administration, but are also capable of providing and managing a wide variety of traffic related information. In addition, these systems are expanding rapidly in terms of purpose and scope of use. Currently, the utilization of image processing technology in the field of traffic accident management is limited to installing surveillance cameras on locations where traffic accidents are expected to occur and digitalizing of recorded data. Accurately recording the sequence of situations around a traffic accident in a freeway and then objectively and clearly analyzing how such accident occurred is more urgent and important than anything else in resolving a traffic accident. Therefore, in this research, existing technologies, this freeway attribute, velocity changes, volume changes, occupancy changes reflect judge the primary. Furthermore, We pointed out by many past researches while presenting and implementing an active and environmentally adaptive methodology capable of effectively reducing false detection situations which frequently occur even with the Gaussian Mixture model analytical method which has been considered the best among well-known environmental obstacle reduction methods. Therefore, in this way, the accident was the final decision. Also, environmental factors occur frequently, and with the index finger situations, effectively reducing that can actively and environmentally adaptive techniques through accident final judgment. This implementation of the evaluate performance of the experiment road of 12 incidents in simulated and the jang-hang IC's real-time accident experiment. As a result, the do well detection 93.33%, false alarm 6.7% as showed high reliability.

Analysis on Factors of Traffic Accident on Roads having Width of Less than 9 Meters (폭원 9m 미만 도로 내 교통사고 영향 요인 분석)

  • Lim, You-Jin;Moon, Hak-Ryong;Kang, Won-Pyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.3
    • /
    • pp.96-106
    • /
    • 2014
  • Necessarily traffic policies have been biased in car than pedestrian, so pedestrian's environment is getting worse. Result of this situation our accident rate is high as 36.4%, compared to OECD member countries with average rate of 17.8%(in 2009). Increasing interest for pedestrians environment improvement, and it make an effort to build environment to guarantee walk and safety of pedestrians. Analysis on the binary logistic regression(BLR) was used. The dependent variable is occurring from the road width of less than 9m accident, and independent variable extracted can be obtained from the traffic accident data. Traffic accident on roads having width of less than 9 meters affecting variables is when the driver is straight, when the driver is female, when the pedestrian is walk driveway, and so on. To prevent it, efforts is demanded to protect handicapped, to build safe pedestrians environment using C-ITS and to decrease speed of going straight vehicle on roads having width of less than 9 meters.

Development and Application of Traffic Accident Forecasting Model for Signalized Intersections (Four-Legged Signalized Intersections In Kwang-Ju) (신호교차로 교통사고 예측모형의 개발 및 적용 (광주광역시 4-지 신호교차로를 중심으로))

  • 하태준;강정규;박제진
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.6
    • /
    • pp.207-218
    • /
    • 2001
  • As a city and industries are developed rapidly, a traffic accident and congestion take places on the road link become serious and it can be a large problem of the society in the future. Especially, most of the traffic accidents on the signalized intersection are caused by the human factor, vehicle and environmental factor mutually. The relation of the traffic accident and volume is acting on the outbreak of the traffic accident and the mistake of driver altogether as a major cause. The purpose of this paper is to develop a model for the forecasting of the traffic accident and to use research data gained to predict many traffic accidents. The data of this study were used with real one of the 73 areas of the four-legged signalized intersection in Kwang-ju city from 1996 to 1998 for three years to develop a model for the forecasting of the traffic accident. The statistical methods used in this paper are the principal component, regression and correlation analysis. We studied accident models to find out useful data from the statistics method and applied the data to the different area of the Choun-La province for the verification of the model. So, the result of this paper showed a reasonable model for the forecasting or the traffic accident and possibility of the model for simulating on real case. Finally, This study would be made of a study continually for the safe design and plan for the four-legged signalized intersection.

  • PDF

Development of FCEV accident scenario and analysis study on dangerous distance in road tunnel (도로터널에서 수소차 사고시나리오 개발 및 위험거리에 대한 분석 연구)

  • Lee, Hu-Yeong;Ryu, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.659-677
    • /
    • 2022
  • Hydrogen is emerging as a next-generation energy source and development and supply of FCEV (hydrogen fuel cell electric vehicle) is expected to occur rapidly. Accordingly, measures to respond to hydrogen car accidents are required and researches on the safety of hydrogen cars are being actively conducted. In this study, In this study, we developed a hydrogen car accident scenarios suitable for domestic conditions for the safety evaluation of hydrogen car in road tunnels through analysis of existing experiments and research data and analyzed and presented the hazard distance according to the accident results of the hydrogen car accident scenarios. The accident results according to the hydrogen car accident scenario were classified into minor accidents, general fires, jet flames and explosions. The probability of occurrence of each accident results are predicted to be 93.06%, 1.83%, 2.25%, and 2.31%. In the case of applying the hydrogen tank specifications of FCEV developed in Korea, the hazard distance for explosion pressure (based on 16.5 kPa) is about 17.6 m, about 6 m for jet fire, up to 35 m for fireball in road tunnel with a standard cross section (72 m2).

Quantitative Effectiveness Analysis of Vehicle Inspection (자동차검사제도의 정량적 효과분석)

  • Jo, Han-Seon;Sim, Jae-Ik;Kim, Jong-Ryong
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.3
    • /
    • pp.65-74
    • /
    • 2007
  • Vehicle inspection is a system to help all vehicles function safely through periodic maintenance. Vehicle inspections have been performed since 1962 in Korea by the government in order to reduce traffic accidents due to vehicle defects. Also, vehicle inspections may help protect citizens against uninsured vehicles and illegal vehicle remodeling by discovering and disclosing those vehicles. The prime objective of vehicle inspection is to guarantee all vehicles drive safely on the road by inspecting and fixing items which can affect traffic accidents. In addition, vehicle inspections may help to improve the public order related to vehicle operations and prevent crime through the confirmation of vehicle identity and authentication of ownership. Although there are many benefits of vehicle inspection. there are some negative opinions of the system. In this study, a methodology to analyze the effectiveness of the vehicle inspection system quantitatively in terms of traffic safety was developed. According to the developed methodology. accidents were reduced by 23.735, which is 11% of the total number of accidents in 2005.

A Design of the Vehicle Crisis Detection System(VCDS) based on vehicle internal and external data and deep learning (차량 내·외부 데이터 및 딥러닝 기반 차량 위기 감지 시스템 설계)

  • Son, Su-Rak;Jeong, Yi-Na
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.2
    • /
    • pp.128-133
    • /
    • 2021
  • Currently, autonomous vehicle markets are commercializing a third-level autonomous vehicle, but there is a possibility that an accident may occur even during fully autonomous driving due to stability issues. In fact, autonomous vehicles have recorded 81 accidents. This is because, unlike level 3, autonomous vehicles after level 4 have to judge and respond to emergency situations by themselves. Therefore, this paper proposes a vehicle crisis detection system(VCDS) that collects and stores information outside the vehicle through CNN, and uses the stored information and vehicle sensor data to output the crisis situation of the vehicle as a number between 0 and 1. The VCDS consists of two modules. The vehicle external situation collection module collects surrounding vehicle and pedestrian data using a CNN-based neural network model. The vehicle crisis situation determination module detects a crisis situation in the vehicle by using the output of the vehicle external situation collection module and the vehicle internal sensor data. As a result of the experiment, the average operation time of VESCM was 55ms, R-CNN was 74ms, and CNN was 101ms. In particular, R-CNN shows similar computation time to VESCM when the number of pedestrians is small, but it takes more computation time than VESCM as the number of pedestrians increases. On average, VESCM had 25.68% faster computation time than R-CNN and 45.54% faster than CNN, and the accuracy of all three models did not decrease below 80% and showed high accuracy.

A Study on the Development of Experimental Method for ACC Using Powertrain HILS (파워트레인 HILS를 이용한 차량간격 제어장치의 실험기법 개발에 관한 연구)

  • 백창현;윤원석;장광수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.165-173
    • /
    • 1999
  • HILS system consists of hardwares which are engine and dynamometer and softwares which is vehicle model without the engine. It is well-known that because of engines's nonlinearity it is difficult to describe an engine exactly and not to lose it reality coincidently. But HILS system is the high technology that can compensate this weakness by using a real engine instead of model. The various experiments regarding the ACC which are not normally available for real vehicle tests have been performed by the HILS system. From the results , the HILS system is expected to decrease the experimental accident rate and save costs and time. Compared with simulation, HILS experimental results show similarities and expected to increase road capacity.

  • PDF

Driving Safety Analysis for vehicles Against High Wind on the Bridges Using Extreme Value Statistics (극치통계분석을 이용한 교량상판 풍하중에 대한 차량주행 안전도 평가)

  • Chung, Jee-Seung
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.112-117
    • /
    • 2010
  • This study presents a methodology to evaluate the driving safety of vehicles against localized high wind on the roads over the valleys or along the coasts. Risk level for vehicle accident is derived from the side slip caused by cross wind, and then safety criteria based on reliability for driving stability are defined. The level of safety is classified according to probability of exceeding against wind speed using the concept of extreme value statistics. To attain the safety level of vehicle on bridges, numerical simulations using Computational Fluid Dynamics(CFD) are performed. Based on this result, risk reduction and quality improvement is expected through analysis for each alternative in bridges design, construction and operation & maintenance stage with proposed process