• 제목/요약/키워드: Vehicle

검색결과 20,435건 처리시간 0.048초

서울대공원 코끼리 열차 특성에 따른 탑승자의 초극미세입자(Ultrafine Particles) 노출 (Exposures of Ultrafine Particles for Passengers of Elephant Vehicle in the Seoul Grand Park)

  • 주송이;황지희;함승헌;이기영
    • 한국환경보건학회지
    • /
    • 제38권5호
    • /
    • pp.393-397
    • /
    • 2012
  • Objectives: The objectives of this study were to measure passengers' exposure to ultrafine particles (UFP) and to determine effects of fuel, operating condition and position of seat. Method: UFP exposures in front and back seats of the Elephant vehicle in Seoul Grand Park were simultaneously measured by a condensation particle counter (P-Trak model 8525, TSI). The measurements were conducted 7 times with diesel-powered vehicle and 3 times with electricity vehicle in one day. The vehicle stopped at 3 locations along with 2.2 km of driving route. Results: UFP concentration in diesel-powered vehicle was significantly higher than electricity vehicle. At front seat of diesel-powered vehicle, average UFP exposure during stopping was significantly higher than during moving. When diesel-powered vehicle moved, UFP exposure in back seat was significantly higher than in front seat. Conclusions: Passengers in the diesel-powered Elephant vehicle could be exposed to high level of UFP. The UFP exposure was associated with operation condition and position of seat.

차량높이 계측을 통한 차종분류 향상 방안 연구 (Improvement of Vehicle Classification Method using Vehicle Height Measurement)

  • 오주삼;장경찬;김민성
    • 한국도로학회논문집
    • /
    • 제12권4호
    • /
    • pp.47-51
    • /
    • 2010
  • 도로를 주행하는 차량들을 구분하는 차종자료는 도로 및 포장의 설계와 관리 등 여러 분야에서 기초자료로 활용되고 있다. 본 연구에서는 차종구분에 차량높이라는 분류기준을 적용하기 위해 주행하는 차량의 높이를 계측할 수 있는 방법을 고안하고 현장에 장비를 설치한 후 실험을 통해서 차량길이와 차량최고높이 자료를 획득하였다. 차량높이 측정과 동시에 동영상을 촬영하여 국토해양부 12종 차종분류에 의거하여 차종분류 기준값을 작성하였다. 영상을 통해 작성된 차종자료 기준값과 측정된 차량길이와 차량높이를 토대로 판별함수를 이용한 차종분류값을 서로 비교한 결과 88.6%의 차종정확도를 확인하였다. 이를 통해 차량높이라는 분류기준을 적용하여 차종분류에 활용할 수 있는 방안을 제시하였다.

차량 쏠림 개선을 위한 전륜 현가시스템의 기하공차 최적화 (Optimization of Geometric Dimension & Tolerance Parameters of Front Suspension System for Vehicle Pulls Improvement)

  • 김용석;장동영
    • 대한기계학회논문집A
    • /
    • 제33권9호
    • /
    • pp.903-912
    • /
    • 2009
  • This study is focused on simulation-based dimensional tolerance optimization process (DTOP) to minimize vehicle pulls by reduction of dimensional variation in front suspension system. In previous studies, the effect of tires and wheel alignment sensitivity have mainly been investigated to eliminate vehicle pulls in nominal design condition without allocating optimal tolerance level for selected components, among various factors regarding vehicle pulls such as vehicle design parameters, vehicle weight balance, tires, and environmental factors. Unfortunately, there are wide variations in the real vehicle, and these have impacted actual vehicle pulls, especially wheel alignment effects from suspension geometry variation has not been considered in the previous studies. In the tolerance design of suspension, tolerance variables with the uncertainty such as parts dimensional variation, assembly process, datum position and direction, and assembly tool tolerance has a great influence on the variation of the suspension dimensional performances. This study introduces total vehicle pull prediction model in considering major key factors for vehicle pull sensitivity. The Monte Carlo-based tolerance analysis model using Taguchi robust method is developed to optimize dimensional tolerance parameters, satisfying on the target variation level.

Hardware-in-the Loop Simulation 을 통한 차간거리 제어시스템의 제어 성능 연구 (An Investigation of Vehicle-to-Vehicle Distance Control Laws Using Hardware-in-the Loop Simulation)

  • 이경수;이찬규
    • 대한기계학회논문집A
    • /
    • 제26권7호
    • /
    • pp.1401-1407
    • /
    • 2002
  • This paper represents an investigation of the vehicle-to-vehicle distance control system using Hardware-in-the-Loop Simulation(HiLS). Control logic is primarily developed and tested with a specially equipped test vehicle. Establishment of an efficient and low cost development tool is a very important issue, and test vehicle approach is costly and time consuming. HiLS method is useful in the investigation of driver assistance and active safety systems. The HiLS system consists of a stepper motor for throttle control, a hydraulic brake system with an electronic vacuum booster, an electronic controller unit, a data logging computer which are used to save vehicle states and signals of actuator through a CAN and a simulation computer using mathematical vehicle model. Adaptation of a CAN instead of RS-232 Serial Interface for communication is a trend in the automotive industry. Since this environment is the same as a test vehicle, a control logic verified in laboratory can be easily transferred to a test vehicle.

부품의 국부적 유연성이 차량의 동적 거동에 미치는 영향 (Flexibility Effects of Components on the Dynamic Behavior of Vehicle)

  • 이상범;임홍재
    • 한국공작기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.57-62
    • /
    • 2003
  • A fundamental structural design consideration for a vehicle system is the overall vibration characteristics in bending and torsion. Vibration characteristics of such vehicle system are mainly influenced by the static and dynamic stiffness of the vehicle body structure and also by the material and physical properties of the components attached to the vehicle body structure. In this paper, modeling techniques for the vehicle components are presented and the flexibility and mass effects of the components for the vibration characteristics of the vehicle are investigated. The $1^{st}$ torsional frequency is increased by attaching windshields to the B.I.W. (body-in-white), but the $1^{st}$ bending frequency is decreased by the mass effect. And also, the natural frequencies of the vehicle are large decreased by attaching bumpers, seats, doors, trunk-lid etc. But, suspension system rarely affects the natural frequencies of the vehicle. The study shows thai the dynamic characteristics of the vehicle system can be effectively predicted in the initial design stage.

차량-보행자 충돌사고 재구성 해석: 차량 속도 계산과 불확실성 (Reconstruction Analysis of Vehicle-pedestrian Collision Accidents: Calculations and Uncertainties of Vehicle Speed)

  • 한인환
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.82-91
    • /
    • 2011
  • In this paper, a planar model for mechanics of a vehicle/pedestrian collision incorporating road gradient is derived to evaluate the pre-collision speed of vehicle. It takes into account a few physical variables and parameters of popular wrap and forward projection collisions, which include horizontal distance traveled between primary and secondary impacts with the vehicle, launch angle, center-of-gravity height at launch, distance from launch to rest, pedestrian-ground drag factor, the pre-collision vehicle speed and road gradient. The model including road gradient is derived analytically for reconstruction of pedestrian collision accidents, and evaluates the vehicle speed from the pedestrian throw distance. The model coefficients have physical interpretations and are determined through direct calculation. This work shows that the road gradient has a significant effect on the evaluation of the vehicle speed and must be considered in accident cases with inclined road. In additions, foreign/domestic empirical cases and multibody dynamic simulation results are used to construct a least-squares fitted model that has the same structure of the analytical one that provides an estimate of the vehicle speed based on the pedestrian throw distance and the band within which the vehicle speed would be expected to be in 95% of cases.

LTE-D2D 차량 네트워크에서 정보 전달 방법 (Data Dissemination in LTE-D2D Based Vehicular Network)

  • 심용희;김영한
    • 한국통신학회논문지
    • /
    • 제40권3호
    • /
    • pp.602-612
    • /
    • 2015
  • 현재 표준 차량 통신 프로토콜인 IEEE 802.11p는 차량 간 한 홉 전송을 수행하기 때문에 차량 환경에서 효율적인 정보 전달을 수행하는데 한계가 있다. 본 논문은 차량 환경에서 효율적인 정보 전달을 위해 무선 근거리 통신 중 하나인 LTE-D2D 기술을 사용한 차량 네트워크를 제안한다. 이때 전송 메시지 형태는 IP 패킷 옵션을 지닌 이름 기반 정보 메시지를 사용하고 일반 차량 노드는 요청하는 메시지를 중간 매개 노드인 대형 차량 노드로 전송하여 정보를 전송 받는다. 성능 분석을 통해 셀룰러 네트워크와 제안된 LTE-D2D 차량 네트워크에서의 패킷전달 시간에 따른 데이터 처리율을 비교하였다.

그림자를 이용한 원거리 차량 인식 및 추적 (Long Distance Vehicle Recognition and Tracking using Shadow)

  • 안영선;곽성우
    • 한국전자통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.251-256
    • /
    • 2019
  • 본 논문에서는 무인자율주행자동차를 레이싱 경기에 운용하기 위해 차량의 전면유리 중앙에 설치된 단안카메라를 사용하여 원거리에 있는 차량을 인식하고 추적하는 알고리즘을 제안한다. 차량은 하르(Haar) 특징을 사용하여 탐지하고, 차량바닥에 있는 그림자를 검출하여 차량의 크기와 위치를 판단한다. 인식된 차량의 주변을 ROI(: Region Of Interest)로 설정하여 다음 프레임들에서는 ROI 내부의 차량 그림자를 찾아 추적한다. 이를 통하여 차량의 위치, 상대속도와 이동방향을 예측한다. 실험결과는 100m이상의 거리에서 90%이상의 인식율로 차량을 인식하였다.

기동성을 위한 후륜 조향 차량의 최적 성능에 대한 연구 (An Experimental Study of Optimal Performance of Rear Wheel Steering Vehicle for Maneuverability)

  • 안국진;좌은혁;박관우;윤영식;이경수
    • 자동차안전학회지
    • /
    • 제11권2호
    • /
    • pp.23-28
    • /
    • 2019
  • This paper presents an optimal performance of rear wheel steering vehicle for maneuverability. The maneuverability of vehicle is evaluated in terms of yaw rate, body slip angle and driver input. The maneuverability of vehicle can be improved by rear wheel steering system. To obtain optimal performance of rear wheel steering vehicle, the optimal control history is designed. The high dimensional trajectory optimization problem is solved by formulating a quadratic program considering rear wheel steer input. To evaluate handling performance 7 degree-of-freedom vehicle model with actuation sub-models is designed. A step steer test is conducted to evaluate rear wheel steering vehicle. A response time, a TB factor, overshoot, and yaw rate gain are investigated through objective criteria, assessment webs. The handling performance of vehicle is evaluated via computer simulations. It has been shown from simulation studies that optimal controlled rear wheel steering vehicle provides improved performance compared to others.

Statics variation analysis due to spatially moving of a full ocean depth autonomous underwater vehicle

  • Jiang, Yanqing;Li, Ye;Su, Yumin;Cao, Jian;Li, Yueming;Wang, Youkang;Sun, Yeyi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.448-461
    • /
    • 2019
  • Changes in gravity and buoyancy of a Full Ocean Depth Autonomous Underwater Vehicle (FOD-AUV) during its descending and ascending process must be considered very carefully compared with a Human Occupied Vehicle (HOV) or a Remotely Pperated Vehicle (ROV) whose activities rely on human decision. We firstly designed a two-step weight dropping pattern to achieve a high descending and ascending efficiency and a gravity-buoyancy balance at designed depth. The static equations showed that gravity acceleration, seawater density and displacement are three key aspects affecting the balance. Secondly, we try our best to analysis the gravity and buoyancy changing according to the previous known scientific information, such as anomaly of gravity acceleration, changing of seawater states. Finally, we drew conclusion that gravity changes little (no more than 0.1kgf, it is impossible to give a accurate value). A density-depth relationship at the Challenger Deep was acquired and the displacement changing of the FOD-AUV was calculated preciously.