• Title/Summary/Keyword: Vegetation effects

Search Result 473, Processing Time 0.029 seconds

Channel Changes and Effect of Flow Pulses on Hydraulic Geometry Downstream of the Hapcheon Dam (합천댐 하류 하천지형 변화 예측 및 흐름파가 수리기하 변화에 미치는 영향)

  • Shin, Young-Ho;Julien, Pierre Y.
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.579-589
    • /
    • 2009
  • Hwang River in South Korea, has experienced channel adjustments due to dam construction. Hapcheon main dam and re-regulation dam. The reach below the re-regulation dam (45 km long) changed in flow regime, channel width, bed material distribution, vegetation expansion, and island formation after dam construction. The re-regulation dam dramatically reduced annual peak flow from 654.7 $m^3$/s to 126.3 $m^3$/s and trapped the annual 591 thousand $m^3$ of sediment load formerly delivered from the upper watershed since the completion of the dam in 1989. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that non-vegetated active channel width narrowed an average of 152 m (47% of 1982) and non-vegetated active channel area decreased an average of 6.6 km2 (44% of 1982) between 1982 and 2004, with most narrowing and decreasing occurring after dam construction. The effects of daily pulses of water from peak hydropower generation and sudden sluice gate operations are investigated downstream of Hapcheon Dam in South Korea. The study reach is 45 km long from the Hapcheon re-regulation Dam to the confluence with the Nakdong River. An analysis of a time series of aerial photographs taken in 1982, 1993, and 2004 showed that the non-vegetated active channel width narrowed an average of 152 m (47% reduction since 1982). The non-vegetated active channel area also decreased an average of 6.6 $km^2$ (44% reduction since 1982) between 1982 and 2004, with most changes occurring after dam construction. The average median bed material size increased from 1.07 mm in 1983 to 5.72 mm in 2003, and the bed slope of the reach decreased from 0.000943 in 1983 to 0.000847 in 2003. The riverbed vertical degradation is approximately 2.6 m for a distance of 20 km below the re-regulation dam. It is expected from the result of the unsteady sediment transport numerical model (GSTAR-1D) steady simulations that the thalweg elevation will reach a stable condition around 2020. The model also confirms the theoretical prediction that sediment transport rates from daily pulses and flood peaks are 21 % and 15 % higher than their respective averages.

Effect of Species and Seed Mixture on Productivity and Botanical Composition in Oversown Hilly Pasture, the Central Northern Area of Korea (중북부 산지초지에서 국내육성 목초 이용 불경운 초지조성 혼파조합이 목초 생산성 및 식생구성에 미치는 영향)

  • Jung, Jeong Sung;Choi, Ki Choon;Kim, Won Ho;Choi, Gi Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.40 no.1
    • /
    • pp.7-14
    • /
    • 2020
  • This study was conducted to find out the effects of seed mixture using new domestic grass varieties orchardgrass 'Onnuri' and tall fescue 'Greenmaster' on botanical composition and dry matter productivity from 2015 to 2018 in oversown hilly pasture, the central northern area of Korea. This experiment was consisted of 4 mixed grasses (Treatment 1 : tall fescue oriented mixture with imported varieties; Treatment 2 : orchardgrass oriented mixture with imported varieties; Treatment 3 : orchardgrass oriented mixture with domestic varieties, Treatment 4 : tall fescue oriented mixture with domestic varieties). Evaluation of seasonal changes in botanical composition of pasture showed that orchardgrass was the highest in all treatments, ranging from 46 to 89% and Kentucky bluegrass was the second highest in all treatments. Treatment 3 (7,633 kg ha-1) and Treatment 4 (7,570 kg ha-1), mixed grasses using domestic varieties, were showed the highest dry matter yield than Treatment 1(6,950 kg ha-1) and Treatment 2 (6,934 kg ha-1), which were mixed grasses using introduced varieties. Therefore, these results showed that the orchard grass oriented grasses mixture with domestic varieties was good for grassland vegetation and productivity in oversown hilly pasture, the central northern area of Korea.

Effects of Forest Road Construction on Stream Water Qualities(I) - The Variation of Suspended Sediment by Forest Road Construction - (임도개설(林道開設)이 계류수질(溪流水質)에 미치는 영향(影響)(I) - 임도개설(林道開設)에 따른 부유토사량(浮遊土砂量)의 변화(變化) -)

  • Chun, Kun-Woo;Kim, Min-Sik;Ezaki, Tsugio
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.280-287
    • /
    • 1996
  • This study was carried out to investigate the export rate of suspended sediment by different precipitation intensity after forest road construction for torrential streams on three different watersheds with various forest road density(Watershed A : 6.67m/ha, Watershed B : 5.52m/ha, and Watershed C : control) in the Experimental Forest of Kangwon National University. The results were as follows. 1. Closely related to the the amount of rainfall in both 1994 and 1995, the average streanfkiw rate was less than $0.25{\times}10^4m^3/day$ during May and June and $5.0{\times}10^4m^3/day$ during July and August. More than $25{\times}10^4m^3/day$ of streanflow rate was occurred twice in 1994 and seven times in 1995. 2. The amount of suspended sediment in three watersheds was less than standard of drinking water(25mg/l) before road construction with daily rainfall of 74mm, 92mm, and 120mm in 1994, also after road construction with daily rainfall of 21mm and 47mm in 1995. But, under the 192mm of daily rainfall, Watershed C did not show the difference in the amount of suspended sediment, however, Watershed A and B produced 1,525mg/l and 775mg/l, respectively, which is 61 and 31 fold of stabdard of drinking water, and construction to export for 35 hours after rainfall. 3. The maximum amount of suspended sediment was less than the standard of drinking water with light rainfall before and after road construction. Under the 192mm of daily rainfall, the maximum amounts of suspended sediment in Watershed A and B were 13,150mg/l and 2,690mg/l, of 526 and 108 fold of standard of drinking water, respectively, showing obvious water pollution by sedimentation. Results of the study indicated that the forest road construction had great influence on the sedimentation, and getting increased by higher road density and heavier rainfall. Therefore such practices as vegetation covering and soil erosion control facility should be established accompanying with forest road construction to prevent from sedimentation.

  • PDF

Effects of Different Nitrogen Levels and Planting Densities on the Quality and Yield of the Black Rice Cultivar 'Shinnongheugchal' (재식밀도 및 시비량 차이가 신농흑찰 품질 및 수량에 미치는 영향)

  • Lee, In-Sok;Lee, Deok-Ryeol;Cho, Seung-Hyun;Lee, Song-Yi;Kim, Kab-Cheol;Lee, Ki-Kwon;Song, Young-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.2
    • /
    • pp.79-86
    • /
    • 2016
  • The late-maturing black rice cultivar Shinnongheugchal from Jeollabuk-do Agricultural Research and Extension Service was used as the plant material for estimating growth characters, quality and yield from the vegetation period to harvest age. This study was performed to select an optimum combination of nitrogen level and planting density for the maximum yield of Shinnongheugchal. The plant height, number of tillers, and SPAD index were higher when the combination of 70 hills per $3.3m^2$ and 13 kg/10 a nitrogen level was used at 30 days after transplanting. The heading date for the combination of 70 hills per $3.3m^2$ and 15 kg/10 a nitrogen level, and 80 hills per $3.3m^2$ and 15 kg/10 a nitrogen level was August 22. The heading date for the other combinations was August 21. The combination of 70 hills per $3.3m^2$ and 13 kg/10 a nitrogen level yielded the highest number of tillers at 40 days after flowering. Even though the lodging index was increased with increasing nitrogen levels, field lodging did not occur until harvest time. Seed nitrogen concentration in the combination of 70 hills per $3.3m^2$ and 13 kg/10 a nitrogen level showed a significant difference when compared with the other combinations. The black rice yield varied significantly, and the highest yield was observed in the combination of 70 hills per $3.3m^2$ and 13 kg/10 a nitrogen level. The yield was significantly correlated with seed nitrogen concentration. The maximum yield was estimated to be 14.67 kg/10 a nitrogen level by using the regression equation. On average, the coloring degree of the black rice was higher at planting density of 70 hills per $3.3m^2$ than at 80 hills per $3.3m^2$. The highest yield of perfect black rice was obtained using the combination of 70 hills per $3.3m^2$ and 13 kg/10 a nitrogen level. Our findings demonstrate that a nitrogen level of 13-14 kg/10 a can be used to obtain the maximum yield from Shinnongheugchal with yield, cyanidin 3-glucoside content, and perfect black rice yield as the standard.

Effects of Climate Change on C4 Plant List and Distribution in South Korea:A Review (기후변화에 따른 국내 C4 식물 목록과 분포 변화:고찰)

  • Kim, Myung-Hyun;Han, Min-Su;Kang, Kee-Kyung;Na, Young-Eun;Bang, Hea-Son
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.3
    • /
    • pp.123-139
    • /
    • 2011
  • It is expected that identification and lists of $C_4$ plants in specific regions are useful not only for the ecological researches that are related to vegetation phenology and succession but also as an index of climate change. In this review, $C_4$ plants growing in South Korea were listed and their life forms were investigated. In addition, we discussed the influences that climatic change and the $C_4$ plants exerted on plant ecosystem. Photosynthetic pathway types ($C_3$ and $C_4$) for the plant species in South Korea were determined by reviewing the scientific literatures published between 1971 and 2010. Of the total 4476 species in 1123 genera and 197 families, 206 species (4.6%) in 84 genera (7.5%) and 21 families (10.7%) were identified as $C_4$ plants (including $C_3$-$C_4$ intermediate plants). Among the identified $C_4$ species, 53 species (25.7%) in 26 genera and 15 families were classified as Dicotyledoneae, while 153 species (74.3%) in 58 genera and 6 families were classified as Monocotyledoneae. The majority of the $C_4$ species belong to four families: Chenopodiaceae (15 species), Amaranthaceae (13 species), Gramineae (102 speceis) and Cyperaceae (45 species). With respect to life form composition of 206 $C_4$ species, Th-$R_5$-$D_4$-t was most dominant: 95 species (46.1%) were included in Th, 123 species (59.7%) in $R_5$, 179 species (86.9%) in $D_4$, and 122 species (59.2%) in t. The projected increase in temperature due to climate change may provide better conditions for the growth of $C_4$ plants. Such a result will have considerable impacts on the interspecific competition between $C_3$ and $C_4$ plants, the distribution of $C_4$ plants, plant phenology, and plant diversity.

A Study on Decreasing Effects of Ultra-fine Particles (PM2.5) by Structures in a Roadside Buffer Green - A Buffer Green in Songpa-gu, Seoul - (도로변 완충녹지의 식재구조에 따른 초미세먼지(PM2.5)농도 저감효과 연구 - 서울 송파구 완충녹지를 대상으로 -)

  • Hwang, Kwang-Il;Han, Bong-Ho;Kwark, Jeong-In;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.46 no.4
    • /
    • pp.61-75
    • /
    • 2018
  • This study aims to verify the effect of green buffers, built as urban planning facilities on the reduction of ultra-fine particulate($PM_{2.5}$) and analyze changes in ultra-fine particles by structure, green volume and planting types of wayside green buffers, thus drawing the factors that can be used when green buffers are built to reduce ultra-fine particulate based on the results. This study selected Songpa-gu, and investigated 16 sites on 5 green buffers adjacent to two of Songpa-gu's main roads, 'Yangjaedaero' and 'Songpadaero'. This study divided all the green spaces into three different types-slope type, plain type and mounding type, and analyzed the mean green volume. As a result of measuring the concentration of $PM_{2.5}$, this study found that it was $55.5{\mu}g/m^3$ on average in winter, which was a harmful level according to the integrated environmental index provided by Seoul City, saying that levels above $50{\mu}g/m^3$ may have a harmful effect on sensitive groups of people. Particularly, the concentration of $PM_{2.5}$ was $38.6{\mu}g/m^3$ on average in spring, which exceeded the mean concentration of $PM_{2.5}$ in Seoul City in 2015. The mean concentrations of $PM_{2.5}$ in every investigation spot were $46.6{\mu}g/m^3$ for sidewalks, $45.5{\mu}g/m^3$ for green spaces and $42.9{\mu}g/m^3$ for residential areas, all of which were lower than $53.2{\mu}g/m^3$ for roads, regardless of the season. The concentration of $PM_{2.5}$ for residential areas was the lowest. In the stage of confirming the effect of green buffers, this study analyzed the correlation between the green volume of vegetation and the fluctuated rate of ultra-fine particles. As a result, it was found that the green coverage rate of trees and shrubs was related to the crown volume in every investigation spot but were mutually and complexly affected by each other. Therefore, this study judged that the greater the number of layers of shrubs that are made, the more effective it is in reducing the concentration of $PM_{2.5}$. As for seasonal characteristics, this study analyzed the correlation between the concentration of $PM_{2.5}$ for residential areas in winter and the green coverage rate of each green space type. As a result, this study found that there was a negative correlation showing that the higher the shrub green coverage rate is, the lower the concentration value becomes in all the slope-type, plain-type and mounding-type green spaces. This study confirmed that the number of tree rows and the number of shrub layers have negative correlations with the fluctuated concentration rate of $PM_{2.5}$. Especially, it was judged that the shrub green volume has greater effect than any other factor, and each green space type shows a negative correlation with the shrub coverage rate in winter.

Estimating Radial Growth Response of Major Tree Species using Climatic and Topographic Condition in South Korea (기후와 지형 조건을 반영한 우리나라 주요 수종의 반경 생장 반응 예측)

  • Choi, Komi;Kim, Moonil;Lee, Woo-Kyun;Gang, Hyeon-u;Chung, Dong-Jun;Ko, Eun-jin;Yun, Byung-Hyun;Kim, Chan-Hoe
    • Journal of Climate Change Research
    • /
    • v.5 no.2
    • /
    • pp.127-137
    • /
    • 2014
  • The main purpose of this study is to estimate tradial growth response and to predict the potential spatial distribution of major tree species(Pinus densiflora, Quercus mongolica, Quercus spp., Castanea crenata and Larix kaempferi) in South Korea, considering climate and topographic factors. To estimate radial growth response, $5^{th}$ National Forest Inventory data, Topographic Wetness Index (TWI) and climatic data such as temperature and precipitation were used. Also, to predict the potential spatial distribution of major tree species, RCP 8.5 Scenario was applied. By our analysis, it was found that the rising temperature would have negative impacts on radial growth of Pinus densiflora, Castanea crenata and Larix kaempferi, and positive impacts on that of Quercus mongolica, Quercus spp.. Incremental precipitation would have positive effects on radial growth of Pinus densiflora and Quercus mongolica. When radial growth response considered by RCP 8.5 scenario, it was found that the radial growth of Pinus densiflora, Castanea crenata and Larix kaempferi would be more vulnerable than that of Quercus mongolica and Quercus spp. to temperature. According to the climate change scenario, Quercus spp. including Quercus mongolica would be expected to have greater abundance than its present status in South Korea. The result of this study would be helpful for understanding the impact of climatic factors on tree growth and for predicting the distribution of major tree species by climate change in South Korea.

Distributional Characteristics, Population Structures and Fruition Dynamics of Korean Endemic plant, Prunus choreiana H. T. Im (한국특산 복사앵도나무(Prunus choreiana H. T. Im)의 분포특성, 개체군구조 및 결실동태)

  • Kim, Young-Chul;Chae, Hyun-Hee;Son, Sung-Won
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.2
    • /
    • pp.177-201
    • /
    • 2022
  • Following the adoption of the global plant conservation strategies at the Conference of the Parties for Biodiversity Conservation, diligent actions to achieve each targets are actively carried out. In particular, the need for ecological conservation research to achieve targets 2 and 7 of GSPC-2020 has increased. The priority taxa to accomplish the objectives of GSPC-2020 are rare and endemic plants. In particular, endemic plants with limited distribution in specific regions are evaluated to face a high risk of extinction. To address the necessity to preserve endemic plants, we investigated the distribution of Prunus choreiana H. T. Im, a Korean endemic plant. After that, we examined the vegetational environment of the habitat of P. choreiana and evaluated its population structure. The productivity of its fruits and the effects of pollinators on fruit production were evaluated as well. The fruiting ratio was calculated based on the number of flowers produced. Lastly, we observed the annual growth characteristics of P. choreiana. The habitats of P. choreiana did not show a specific type of vegetation. All of them were located in a limestone area of Gangwon-do in the central Korean Peninsula and occupied a site where the coverage of the tree layer and the sub-tree layer was not high or did not exist. The population structure of P. choreiana contained a high proportion of mature plants capable of producing fruits and a low proportion of seedlings and Juvenile plants. We found that the production of fruits required pollinators and was affected by the performance of each plant. Although P. choreiana produces many flowers, only a maximum of 20% and only 2-6% on average bear fruits. These flowering characteristics may be due to pollinators' low abundance and activity during the flowering season (between mid-March and early April), suggesting that many flowers are needed to attract more pollinators. We rarely observed the re-establishment of seedlings in the population of P. choreiana. Despite that, we predict the population to persist owing to its long lifespan and periodic production of numerous fruits. However, if the tree layer and sub-tree layer in competing status with P. choreiana increase their crown density, they are expected to inhibit the growth of P. choreiana and affect the risk of its extinction. Therefore, the current changes in the vegetational environment of the habitats are expected to decrease the number and extent of P. choreiana in the long term. The results of this study may serve as primary and important data necessary for the achievement of GSPC-2020 objectives.

Effects of Traffic Volume and Air Quality on the Characteristic of Urban Park Soil (교통량과 대기질이 도시 공원 토양 특성에 미치는 영향)

  • Joo, Sunyoung;Lee, Hyunjin;Jeon, Juhui;Seo, Inhye;Yoo, Gayoung
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.1
    • /
    • pp.77-82
    • /
    • 2022
  • This study aims to understand how mobile and stationary air pollution sources affect the air quality and soil properties in urban parks. We selected three sites of urban parks in Seoul as follows: Ha-neul Park in Mapo-gu (Site_M), Ill-won Eco-Park in Gangnam-gu (Site_G), and Yangjae Citizen's Forest in Seocho-gu (Site_Y), and compared the results of each site's traffic volume, air quality concentration, and soil analysis. Traffic volume was high in Site_M, followed by Site_G and Y; Site_M and G were closer to the resource recovery facility than Site_Y. Hence, we hypothesized that PM and NO2 concentrations in the atmosphere were higher in Site_M than Site_G and Y, causing different soil nitrogen content among sites due to different atmospheric deposition. Consistent with our hypothesis, the concentrations of PM2.5 and NO2 were higher in Site_M and G than Site_Y, while Site_Y had higher PM10 than other sites. The soil NO3- contents showed no significant difference among three sites, whereas the soil NH4+ content was extremely high in Site_Y. This high content of soil NH4+ is thought to be due to acidification from excessive fertilization. Lower soil pH of Site_Y further supported the evidence of heavy fertilization in this site. Overall nitrogen dynamics implies that soil nitrogen status is more influenced by park management such as fertilization rather than atmospheric deposition. Despite of lower soil NH4+ content of Site_M and G than Y, vegetation vitality looked similar among three sites. This indirectly indicates that excessive fertilizer input in urban park management needs to be reconsidered. This study showed that even if the air quality was different due to mobile and stationary sources, it did not directly affect the soil nitrogen nutrient status of the adjacent urban park.

Ecological Renewal Plan of Urban Parks for the Revitalization of Urban Green Axis in Gangdong-Gu (강동구 도시 녹지축 기능 활성화를 위한 도시공원의 생태적 리뉴얼 방안 연구)

  • Park, Jeong-Ah;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.12-27
    • /
    • 2023
  • In this study, among the construction-type parks in Gangdong-gu, targeting parks with high environmental and ecological value located on the urban green axis, a plan was prepared for the ecological renewal of urban parks, and a design that applied to them was proposed. The renewal target site was selected by analyzing the general condition of Gangdong-gu and urban parks, the land use and green area ratio, park green area, and the green axis of Gangdong-gu. Gangdong-gu has 54 parks, including 2 neighborhood parks and 52 children's parks. In the first stage of the current status review, 17 parks were extracted through locational value analysis, such as location and adjacency to the natural axis and green axis. In the second stage, eight parks were selected among the first-stage extraction parks based on the ratio of green spaces and open spaces within each park service area. In the third stage, two of the second stage extraction parks were selected based on whether the legal standard of the park area was met, and in the fourth stage, one of the third stage extraction parks was selected through an aging survey of the park. As for the urban ecological status of the renewal target site, the status of land use in the aspect of entropy reduction, the status of soil cover in the aspect of water circulation, and the status of planting structure in the aspect of biodiversity were investigated. As for the status of the three renewal sites, the green area was insufficient at 18.3-45.3%, and the facility area was 54.7%-81.7%, which was judged to have low urban temperature reduction effects. The impervious pavement area accounted for 34.5% to 48.9% of the park area, accounting for most of the facility area, and it was judged that the water circulation function was insufficient. The planting structure consisted of a single layer and a double layer structure, and although the tree layer was good, the lower vegetation was poor, and there was no planting site of edible plants or large hardwood trees, so the biodiversity was low. After the ecological renewal design of Seonrin Children's Park, Dangmal Children's Park, and Saemmul Children's Park, which were selected as the renewal targets in this study, the ecological area ratio of each park increased by 1.4 to 3 times than before the renewal. If the urban parks located on the urban green axis are examined from the perspective of the urban ecosystem and renewed ecologically, it is judged that the expected effect will be high in reducing entropy, improving water circulation, and laying the foundation for biodiversity in terms of the urban ecosystem.