• Title/Summary/Keyword: Vegetation cover

Search Result 545, Processing Time 0.025 seconds

Suggestion for the Definition and Classification of Uninhabited Islands : A Case of Taeanhaean National Park (무인도서의 정의와 분류에 관한 소고 - 태안해안국립공원을 사례로 -)

  • Seo, Jong Cheol;Shin, Young Ho
    • Journal of the Korean association of regional geographers
    • /
    • v.21 no.2
    • /
    • pp.342-354
    • /
    • 2015
  • We suggested definition and classification scheme of uninhabited islands in Taeanhaean National Park for efficient management. Islands (seom) and reefs (yeo) were classified based on approximate HHW. Uninhabited islands were categorized into vegetated islands and rocky islands depending on presence of woody vegetation cover for physical geographic and ecological value and importance. Reefs were also divided into an underwater reef and a reef which covers and uncovers based on approximate LLW. We excluded those areas which are not separated from main land by waterbody even though it is in approx. HHW from islands. We considered several divided areas which adjoin geographically and ecologically one another under the condition of approx. LLW as an island. By using above schemes, we categorized 50 uninhabited islands in Taeanhaean National Park into three groups; 24 vegetated islands, 14 rocky islands, and 12 reefs. If the public institutions adopt these schemes as national standards, it will be useful in managing uninhabited islands nationwide.

  • PDF

Impact of Northeast Asian Biomass Burning Activities on Regional Atmospheric Environment (동북아시아 지역의 바이오매스 연소 활동이 지역 대기 환경에 미치는 영향)

  • Lee, Kwon-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.1
    • /
    • pp.184-196
    • /
    • 2012
  • Biomass burning activities(BBA) are caused by both natural and anthropogenic origins. Due to emissions of greenhouse gases and atmospheric aerosols during the burning process, BBA has been known to be one of important sources of atmospheric pollution and the climate change. However, the monitoring of BBA and its effects on atmospheric environment are not simple. This study evaluates the trends of BBA and its impact on atmospheric environment by using earth observing satellite. The results show that the most BBA were found over ever green, green vegetation types, and irrigated land cover types in study region. The trends of BBA and aerosol optical thickness which represents relative aerosol loading in the atmosphere, show similar pattern. Aerosol increases caused by BBA highlight the effectiveness of these mechanisms and would affect the regional atmospheric environment and climate change.

Species Alterations Caused by Nitrogen and Carbon Addition in Nutrient-deficient Municipal Waste Landfills

  • Kim, Kee-Dae
    • Journal of Ecology and Environment
    • /
    • v.30 no.2
    • /
    • pp.161-170
    • /
    • 2007
  • The ultimate target of restoring waste landfills is revegetation. The most effective method for increasing species richness and biomass in nutrient limited waste landfills is the use of fertilizers. The aim of the present study was to investigate the effects of nitrogen fertilizer, and the addition of carbon through sawdust, sucrose and litter, on vegetation dynamics at a representative municipal waste landfill in South Korea: Kyongseodong. A total of 288 permanent plots $(0.25m^2)$ were established and treated with nitrogen fertilizer (5, 10 and $20Ng/m^2$), sawdust $(289g/m^2)$ sucrose $(222g/m^2)$ and litter $(222g/m^2)$. The aboveground biomass was significantly enhanced by nitrogen fertilizer at 5 and $10Ng/m^2$, compared with the control plots. The total cover of all plant species increased significantly on plots treated with 5 and $20Ng/m^2$, as well as on those treated with sawdust and sucrose, compared with the control plots. The higher species richness after nitrogen fertilization of 10 to $20Ng/m^2$, and the sawdust and sucrose treatment demonstrated that this was an appropriate restoration option for nutrient deficient waste landfills. This study demonstrated positive nutrient impacts on plant biomass and species richness, despite the fact that municipal waste landfills are ecosystems that are highly disturbed by anthropogenic and internal factors (landfill gas and leachate). Adequate N and C combined treatments will accelerate species succession (higher species richness and perennial increase) for restoration of waste landfills.

Basic Concepts and Geological Applications of LiDAR (LiDAR 기법의 기본원리와 지질학적 적용)

  • Kim, Hyun-Tae;Kim, Young-Seog;We, Kwang-Jae
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.123-135
    • /
    • 2014
  • Earthquakes can cause serious loss of life and significant property damage. Thus, the study of active faults is important in evaluating future fault activity and hazards caused by future earthquake events. Structural mapping and the tracing of active faults are the primary steps in studies of active faults. Until now, active faults in South Korea have been mapped using aerial photography, satellite images, and low-quality DEMs. Lineament analysis as a means of identifying active faults is relatively difficult in Korea due to geological characteristics (weak tectonic activity) and dense vegetation cover. In this paper, we introduce the basic concept of the LiDAR technique (a new prospective remote sensing method) and a data analysis method that can overcome these problems. This paper will contribute to a better understanding of the airborne LiDAR technique and its application to South Korea. Some preliminary results from Korean and USA LiDAR data show the usefulness of this technique for tracing lineaments, active faults, and terraces in South Korea.

Relationship between Abundances of Kaloula borealis and Meteorological Factors based on Habitat Features (서식지 특성에 따른 맹꽁이 개체수와 기상요인과의 관계 분석)

  • Rho, Paikho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.3
    • /
    • pp.103-119
    • /
    • 2016
  • This study aims to assess habitat feature on the large-scale spawning ground of the Boreal Digging Frog Kaloula borealis in Daemyung retarding basin of Daegu, and to analyze the relationships between species abundance and meteorological factors for each habitat. Fifty-seven(57) pitfalls were installed to collect species abundance of 4 survey regions, and high-resolution satellite image, soil sampling equipment, digital topographic map, and GPS were used to develop habitat features such as terrain, soil, vegetation, human disturbance. The analysis shows that the frog is most abundant in sloped region with densely herbaceous cover in southern part of the retarding basin. In the breeding season, lowland regions, where Phragmites communis and P. japonica dominant wetlands and temporary ponds distributed, are heavily concentrated by the species for spawning and foraging. Located in between legally protected Dalsung wetands and lowland regions of the retarding basin, riverine natural levee is ecologically important area as core habitat for Kaloula borealis, and high number of individuals were detected both breeding and non-breeding seasons. Temperate- and pressure-related meteorological elements are selected as statistically significant variables in species abundance of non-breeding season in lowland and highland regions. However, in sloped regions, only a few variables are statistically significant during non-breeding season. Moreover, breeding activities in sloped regions are statistically significant with minimum temperature, grass minimum temperature, dew point temperature, and vapor pressure. Significant meteorological factors with habitat features are effectively applied to establish species conservation strategy of the retarding basin and to construct for avoiding massive road-kills on neighboring roads of the study sites, particularly post-breeding movements from spawning to burrowing areas.

The Reflectance Patterns of land cover During Five Years ($2004{\sim}2008$) Based on MODIS Reflectance Temporal Profiles (시계열 MODIS를 이용한 토지피복의 반사율 패턴: 2004년$\sim$2008년)

  • Yoon, Jong-Suk;Kang, Sung-Jin;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.2
    • /
    • pp.113-126
    • /
    • 2009
  • With high temporal resolution, four times receiving during a day, MODIS images from Terra and Aqua satellites provide several advantages for monitoring spacious land. Especially, diverse MODIS products related to land, atmosphere, and ocean have been provided with radiance MODIS images. The products such as surface reflectance, NDVI, cloud mask, aerosol etc. are based on theoretical algorithms developed in academic areas. Comparing with other change detection studies mainly using the vegetation index, this study investigated temporal surface reflectance of landcovers for five years from 2004 to 2008. The near infrared (NIR) reflectance in urbanized and burned areas showed considerable difference before and after events. The specific characteristics of surface reflectance temporal profiles are possibly useful for the detection of landcover changes and classification.

Development of Habitat Suitability Index (HSI) Model for Mandarin duck (Aix galericulata) and Great spotted woodpeckers (Dendrocopos major) (도시에 서식하는 원앙과 오색딱다구리의 서식 적합성 지수(HSI) 모델 개발)

  • Park, June-Young;Song, Young-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.1
    • /
    • pp.37-51
    • /
    • 2021
  • The purpose of this research is to develop the Habitat Suitability Index (HSI) for habitat environments of Aix galericulata (A. galericulata) and Dendrocopos major (D. major), which tend to inhabit urban environments. A. galericulata and D. major are the keystone species representing the ecosystem of wetlands and forests. Based on the analysis of their urban habitat environments, this study selects artificially adjustable levels of the environmental index in order to produce the HSI model, which can be used when either restoring or creating the urban habitats for these species. To develop the HSI, we conducted field surveys at Jungnangcheon Stream, Changgyeonggung, Jangneung, Bangbae Neighborhood Park, Gildong Ecological Park, and Seodalsan Mountain. These surveys were conducted between April and August 2020, and this period includes the breeding season of both A. galericulata and D. major. Based on our findings from the surveys, we conclude that there are six SI factors for A. galericulata. These include (1) the presence of alluvial islands, (2) waterfront vegetation cover rate, (3) type of aquatic plants for food, (4) size of forest patch, (5) type of trees in nearby forests, and (6) connectivity of waterfront and forest. We also conclude that there are five SI factors for D. major, which include (1) size of forest patch, (2) rate of broadleaf trees in forest patches, (3) type of nesting trees, (4) diameter at breast height (DBH) of nesting trees, and (5) density of dead trees. The result of this research can provide future studies with useful guidance when both (1) comparing the habitat suitability of the target species in different environments and (2) restoring or creating habitats for these species.

A Comparative Analysis on the Pollination Potential Environment of Apis millifera and Bombus ignitus Using the Maxent Model - Focused on Seoul - (Maxent 모델을 이용한 호박벌과 양봉꿀벌의 수분 잠재환경 비교 분석 - 서울시를 중심으로 -)

  • Kim, Yoon-Ho;Cho, Yong-Hyeon;Bae, Yang-Seop;Kim, Tae-Jong;Son, In-Ki
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.1
    • /
    • pp.25-36
    • /
    • 2021
  • The honey bee has a crucial ecological status for maintaining the natural ecology system. Pollination mediations by honey bees are recognized as an efficient way to enhance the quality of biological diversity and green areas in the nature and the urban ecological system. However, the population of bee around the world is decreasing and we do not know exactly how bees react to the physical environment in the urban area. This study is a basic research for the improvement of pollination services in the Korean urban ecological system. It aims to induce and review environmental variables which have high relations with the activities of pollination mediation insects in the urban area. The study established a Maxent model using five urban environmental variables that reflect the ecology of Bombus ignitus and the place information where Bombus ignitus appears in 18 spots of Seoul city, and compared with previous research results on Apis millifera. Bombus ignitus preferred places with more natural environments such as mountain forest areas and vicinities of streams. They preferred Stratified Tree Area the most among the vegetation types existing in the urban area. Comparing chicken models, both species saw their response value drop as the building coverage rose. In the case of Apis millifera and Bombus ignitus variables, the response value of both species was high in 10 out of 20 types. The result of this study is expected to provide basic information for improving the pollination services in the Korean urban area and to be utilized as the basic materials for the future urban planning.

Biodiversity Conservation and Carbon Sequestration in Agroforestry Systems of the Mbalmayo Forest Reserve

  • Mey, Christian Boudoug Jean;Gore, Meredith L.
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.2
    • /
    • pp.91-103
    • /
    • 2021
  • We conducted an analysis of agroforestry system efficiency to conserve biodiversity in the Mbalmayo Forest Reserve (MFR) between March 2018 and June 2018. A synthesis of forest fragmentation data observed on multiple strata and scale satellite imageries over 31 years, between 1987 and 2018 as well as, the use of both a floristic and a faunal surveys, revealed that although 29.28% of natural forests was fragmented and converted to agroforests landscapes, banana and cocoa based agroforest appeared to perform the most relevant records in carbon storage and to attract wild terrestrial and avifauna. Analysis of NDVI, NDWI and Iron Oxyde helped monitor the vegetation cover of the reserve, and differentiate natural and fragmented classes, majority of conserved forest wetlands and agroforestry systems, and a minority of natural dryland forest. Further analysis also revealed significant correlations between NDVI and Shannon Index, and between NDVI and carbon stock. Based on the NDVI value and the equation Y=3.827×X-1.587 (where Y for the carbon stocks and X for NDVI value), we estimated the total carbon stock of the forest reserve at about 99557.6 tonnes, and its mean value at about 8.491 tons/ha. Nevertheless, environmental efforts to sustainably manage agroforestry landscape appear to be a relevant key to conserve wild biodiversity and mitigate climate change at the level of the Mbalmayo Forest Reserve. If anthropogenic activities have deeply changed the reserve's natural landscape, reduced its carbon sequestration performance, and wildlife conservation status, forest wetlands appear to remain its most conserved places and the best refuge for wild fauna still occurring in diverse strata of the MFR.

Atmospheric Correction of Sentinel-2 Images Using Enhanced AOD Information

  • Kim, Seoyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.83-101
    • /
    • 2022
  • Accurate atmospheric correction is essential for the analysis of land surface and environmental monitoring. Aerosol optical depth (AOD) information is particularly important in atmospheric correction because the radiation attenuation by Mie scattering makes the differences between the radiation calculated at the satellite sensor and the radiation measured at the land surface. Thus, it is necessary to use high-quality AOD data for an appropriate atmospheric correction of high-resolution satellite images. In this study, we examined the Second Simulation of a Satellite Signal in the Solar Spectrum (6S)-based atmospheric correction results for the Sentinel-2 images in South Korea using raster AOD (MODIS) and single-point AOD (AERONET). The 6S result was overall agreed with the Sentinel-2 level 2 data. Moreover, using raster AOD showed better performance than using single-point AOD. The atmospheric correction using the single-point AOD yielded some inappropriate values for forest and water pixels, where as the atmospheric correction using raster AOD produced stable and natural patterns in accordance with the land cover map. Also, the Sentinel-2 normalized difference vegetation index (NDVI) after the 6S correction had similar patterns to the up scaled drone NDVI, although Sentinel-2 NDVI had relatively low values. Also, the spatial distribution of both images seemed very similar for growing and harvest seasons. Future work will be necessary to make efforts for the gap-filling of AOD data and an accurate bi-directional reflectance distribution function (BRDF) model for high-resolution atmospheric correction. These methods can help improve the land surface monitoring using the future Compact Advanced Satellite 500 in South Korea.