• Title/Summary/Keyword: Vegetation cover

Search Result 545, Processing Time 0.024 seconds

Monitoring of Particulate Matter Concentration for Forage Crop Cultivation during Winter Season in Saemangeum (새만금 내 동계 사료작물 재배에 따른 미세먼지 농도 변화 모니터링)

  • Lee, Seong-Won;Kang, Bang-Hun;Seo, Il-Hwan
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.114-124
    • /
    • 2022
  • The Saemangeum has a dry surface characteristic with a low moisture content ratio due to the saline and silt soil, so the vegetation cover is low compared to other areas. In areas with low vegetation cover, wind erosion has a high probability of scattering dust. If the vegetation cover is increased by cultivating crops that can withstand the Saemangeum reclaimed environment, scattering dust can be reduced by reducing the flow rate at the bottom. Thus, the purpose of this study is to analyze the effect of suppressing the generation of fine dust and scattering dust by cultivating winter forage crops on the Saemangeum reclaimed land. While growing 0.5 ha of barley and 0.5 ha of triticale in Saemangeum reclaimed land, the concentration of fine dust was monitored according to agricultural work and growth stage. Changes in the concentrations of PM-10, PM-2.5, and PM-1.0 were monitored on the leeward, the windward and centering on the crop field. As a result of monitoring, PM-1.0 had little effect on crop cultivation. the concentration of PM-10 and PM-2.5 increased according to tillage and harvesting, and tillage had a higher increasing the concentration of PM-10 and PM-2.5 than that of harvesting. According to the growth stage of crops, the effect of suppressing scattering dust was shown, and the effect of suppressing scattering dust was higher in the heading stage than in the seedling stage. So, it was found that there was an effect of suppressing scattering dust other than the effect of land covering. Through this study, it was possible to know about the generation and suppression effect of scattering dust according to crop cultivation.

The Characteristics of Early Changes in Vegetation Structure by Forest Cover Type after Forest Fire Damage in Uljin region (울진지역 산불피해지의 산림피복형별 식생구조의 초기 변화 특성)

  • Kim, Tae-Woon;Han, Young-Sub;Lee, Sung-Ho;Lim, Chae-young;Hur, Tae-chul;Im, Chang-Kyun;Gil, Min-Kyung;Park, Joon-hyung
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.27 no.3
    • /
    • pp.1-18
    • /
    • 2024
  • The study aims to establish a direction for forest ecological restoration by classifying forest types and understanding the ecological characteristics of the Uljin forest area damaged by a large fire in 2022. Hierarchical cluster analysis and indicator species analysis were conducted on 78 survey plots located in the forest fire-affected area, and four forest cover types were derived: P. densiflora pure forests, P. densiflora dominant forests, mixed broad-leaved forests, and Q. variabilis dominant forests. As a result of visually comparing changes in forest types before and after forest fire damage, by classifying data according to whether or not upper dead trees are included, it was confirmed that pine forests, which have a high proportion of pine trees, spread widely due to forest fire damage. However, broad-leaved mixed forests and oyster oak dominant forests showed characteristics of maintaining concentration, indicating that pine forests were severely damaged. As a result of the important value analysis, during the process of natural recovery after a forest fire, the species that appear early in the lower layer are the sprouts of existing species such as Quercus mongolica Fisch. ex Ledeb., Quercus variabilis Blume, Fraxinus sieboldiana Blume, Rhododendron mucronulatum Turcz. The distribution of diameter at breast height by forest cover type showed that among areas with extreme forest fire damage, the proportion of dead trees was relatively high and structural changes were large in P. densiflora pure forests and P. densiflora dominant forests where pine trees had a high distribution ratio. However, if continuous monitoring is carried out in the future with reference to the results of this study and plant data is collected and analyzed from a mid- to long-term perspective, it is believed that it will be used as useful data to promote forest ecological restoration projects in forest fire-affected areas.

Land Cover Classification with High Spatial Resolution Using Orthoimage and DSM Based on Fixed-Wing UAV

  • Kim, Gu Hyeok;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2017
  • An UAV (Unmanned Aerial Vehicle) is a flight system that is designed to conduct missions without a pilot. Compared to traditional airborne-based photogrammetry, UAV-based photogrammetry is inexpensive and can obtain high-spatial resolution data quickly. In this study, we aimed to classify the land cover using high-spatial resolution images obtained using a UAV. An RGB camera was used to obtain high-spatial resolution orthoimage. For accurate classification, multispectral image about same areas were obtained using a multispectral sensor. A DSM (Digital Surface Model) and a modified NDVI (Normalized Difference Vegetation Index) were generated using images obtained using the RGB camera and multispectral sensor. Pixel-based classification was performed for twelve classes by using the RF (Random Forest) method. The classification accuracy was evaluated based on the error matrix, and it was confirmed that the proposed method effectively classified the area compared to supervised classification using only the RGB image.

Early Warning System for Desertification in I. R. of Iran (An Application of GIS and Remote Sensing)

  • Sepehr A.;BodaghJamali J.;Javanmard S.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.189-192
    • /
    • 2005
  • Desertification is one of the main global environmental phenomena. It has resulted in deterioration environment and poor economy, and imposed threat to the surviving environment of the overall mankind. Therefore, creating of methods for monitoring and estimate of risk desertification are necessary. Early warning system is one of important ways for monitoring and forecasting of desertification. Remote Sensing and GIS technology are as suitable tools and methods for early warning system. In this aim, we have evaluated of applications of remote sensing and GIS in monitoring and estimating desertification process (case study in Fars Province of Iran). In this research, we have considered erosion and vegetation cover parameters as main factors affecting in desertification process. The result shows that remote sensing and GIS technology could be useful in evaluation of desertification as one method for desertification early warning. Also, Results suggested that erosion and plant cover are affecting in develop the desertification process in study area.

  • PDF

Method Development of Land Cover Change Detection by Typhoon RUSA (태풍 RUSA 전.후의 토지피복변화 분석기법 연구)

  • Lee, Mi-Seon;Park, Geun-Ae;Jung, In-Kyun;Kim, Seong-Joon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.75-78
    • /
    • 2003
  • This study is to present a method of land cover change detection by the typhoon RUSA (August 1 - September 4, 2002) using Landsat 7 ETM+ images. For the Namdae-cheon watershed in Gangreung, two images of Sept. 29, 2000 and Nov. 22, 2002 were prepared. To identify the damaged areas, firstly, the NDVI (Normalized Difference Vegetation Index) of each image was computed, secondly, the NDVI values were reclassified as two categories that the negative index values including zero are the one and the positive index values are the other, thirdly the reclassified image before typhoon is subtracted from the reclassified image after typhoon to get DNDVI (Differential NDVI). From the DNDVI image, the flooded and damaged areas could be extracted.

  • PDF

Estimation of Monthly Actual Evapotranspiration Using NOAA-AVHRR Satellite Images (NOAA-AVHRR 인공위성 영상을 이용한 월 실제증발산량 산정)

  • Kwon, Hyung-Joong;Shin, Sha-Chul;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.15-24
    • /
    • 2004
  • The purpose of this study is to estimate monthly evapotranspiration (ET) using normalized difference vegetation index (NDVI) obtained from NOAA-AVHRR data sets. Actual evapotranspiration was evaluated by the complementary relationship, and monthly NDVI was obtained by maximum value composite method from daily NDVI images in the Korean peninsula for the year 2001 The monthly actual ETs for each land cover were compared with the monthly NDVIs to determine relationships between actual ET and NDVI for each land cover category, There was a high correlation between monthly NDVI and monthly mean actual ET. This study presents an alternative approach for land surface evapotranspiration based on remote sensing techniques.

Estimation of Monthly Evapotranspiration using NOAA/AVHRR Satellite Images

  • Kwon, Hyung J.;Kim, Seong J.;Shin, Sha C.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.670-672
    • /
    • 2003
  • The purpose of this study is to estimate monthly evapotranspiration (ET) using normalized difference vegetation index (NDVI) obtained from NOAA/AVHRR data sets. Actual evapotranspiration was evaluated by the complementary relationship (Morton, 1978, Brutsaert and Stricker, 1979), and monthly NDVI was obtained by maximum value composite method from daily NDVI images in the Korean peninsula for the year 2001. The monthly actual ETs for each land cover were compared with the monthly NDVIs to determine relationships between actual ET and NDVI for each land cover category. There was a high correlation between monthly NDVI and monthly averaged actual ET. This study presents an alternative approach for land surface evapotranspiration based on remote sensing techniques.

  • PDF

Land cover Classification Method using Harmonic Modeling (하모닉 모형을 이용한 토지피복 분류 방법론)

  • Jung, Myunghee;Lee, Sang-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.407-408
    • /
    • 2019
  • 토지 피복과 관련된 지표면 파라미터는 일반적으로 지표에서 감지되어 위성영상에 나타난 많은 물리적 프로세스에 의존하며 계절적 주기성을 갖는 시간적 변화를 보인다. 하모닉 모형은 복잡한 파형을 정현파 성분의 합으로 표시함으로써 레벨, 주기, 진폭 및 위상 요소를 통한 변동을 분석함으로써 표면에서 관찰되는 계절적 변화 패턴을 모델링하는 데 적합한 모형이다. 본 연구에서는 MODIS NDVI (Normalized Difference Vegetation Index) 시계열 자료를 이용하여 하모닉 패턴의 특성에 따라 토지 피복을 분류하는 방법론을 제안하였다.

  • PDF

Ecological responses of natural and planted forests to thinning in southeastern Korea: a chronosequence study

  • Cho, Yong-Chan;Pee, Jung-Hun;Kim, Gyeong-Soon;Koo, Bon-Yoel;Cho, Hyun-Je;Lee, Chang-Seok
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.347-355
    • /
    • 2011
  • Effects of forest thinning on community level properties have not been understood yet in Korea. We investigated regeneration patterns and trajectories after a disturbance by applying a chronosequence approach. Light availability, litter and woody debris cover, and species composition were determined for twenty 50 m line-transect samples representing a disturbance duration gradient (within 11 years). Environmental factors such as light availability and coverage of woody debris and litter changed abruptly after thinning and then returned to the pre-disturbance state. Although species richness was gained at shrub and ground layer in a limited way in both forests, cover of various functional types revealed diversity in their responses. Notably, Alnus firma stands exhibited a larger increment of cover in woody plants. Ordination analysis revealed different regeneration trajectories between natural and planted stands. Based on ordination analysis, rehabilitated stands showed movement to alternative states compared with natural ones, reflecting lower resilience to perturbation (i.e., lower stability). Our results suggest that community resilience to artificial thinning depends on properties of the dominant species. But to get more explanatory ecological information, longer-term static observations are required.

An Integrated Watershed Environmental Assessment and Classification of the Mid-Nakdong River Region (낙동강 중류 지역의 통합적 유역환경평가 및 유형화)

  • Jung, Sung-Gwan;Park, Kyung-Hun
    • Journal of Environmental Impact Assessment
    • /
    • v.13 no.3
    • /
    • pp.137-151
    • /
    • 2004
  • Many of today's environmental problems are regional in scope and their effects overlap and interact. The purpose of this paper is to developed a simple method for an integrated assessment of environmental conditions across the Mid-Nakdong River Region, by combining data on land use, impervious cover, roads, streams, riparian areas, forest patches, population, pollutant loadings, soil erosion and topography. A cluster analysis was used to identify groups of sub-watersheds with similar environmental characteristics. The mean value for each group was used to find watershed that may be more vulnerable to future environmental degradation. Watersheds in cluster I and II had high amount of forest, but the amount of riparian vegetation was low. Watersheds in cluster III, which located in the middle Geumho River and the main course of Nakdong River, had a greater proportion of their agriculture, a greater proportion of agriculture on steep slopes, and less forest adjacent to streams. Watersheds in cluster IV and V were in the most urbanized areas of the region. The principal adverse impacts for watersheds in this group were high scores for urban area, impervious cover, pollutant loadings, population density, forest fragmentation, and low amounts of forest and riparian forest cover. Notwithstanding the exploratory nature of cluster analysis, it appears to be a useful tool for grouping watersheds with similar environmental characteristics.