본 연구는 하천환경평가체계 구축의 일환으로서 식생 평가 지표 및 평가 기준의 검증을 목적으로 수행하였다. 본 연구를 위해 5개 시험하천을 대상으로 68개의 평가단위에서 총 204개의 식생 표본조사구를 설정하였으며, 표본조사구별 상관-종조성 수준에서 식생군집의 분류 및 현존식생도를 작성하였다. 현존식생도를 기준으로 식생자료의 분석을 통해 표본조사의 적정 규모, 식생 지수의 점수 기준, 식생 군집분류의 표준화, 그리고 식생평가지표의 등급화를 위한 종합 점수기준을 검토하였다. 하천 식생 평가를 위해 개발된 식생 다양도 지수와 식생 복잡도, 그리고 식생자연도 지수로 이루어진 식생평가지표의 종합점수 산정 및 등급화는 타당한 것으로 판단되었다. 식생평가지표의 등급화에 대한 식생지수의 기여도를 분석한 결과 식생자연도 지수가 다른 지수에 비해 보다 큰 역할을 하는 것으로 판단되었으나 세부 식생지수 사이의 상호보완적인 관계가 성립되어 있음을 확인할 수 있었다. 또한, 선행 연구에서의 기준의 재검토 및 식생군집 분류의 표준화 작업 등을 통해 개정된 기준을 적용한 결과 식생평가등급 간 변별력이 크게 확보되었음을 확인 할 수 있었으나, 하천구간의 유형에 따른 식생 지수 및 식생평가지표의 등급화는 큰 차이가 없는 것으로 나타났다.
Studies that relate the structure of tropical regrowth vegetation to soil properties are generally lacking in the literature. This study proposes three indices for assessing the structural regeneration of secondary forests. They are: (1) the tree diameter class, (2) the plant life form and (3) the woody/herbaceous plants ratio indices. They were applied to assess the regeneration status of forest regrowth vegetation (aged 1-10 years), derived savanna regrowth vegetation in south western Nigeria, and to secondary forests in different stages of succession in Columbia and Venezuela, Bolivia, Mexico in South and Central America and semi-arid savanna in Ethiopia and seasonal deciduous forest successional stages in India. In all the cases, the indices increased with increasing age of regrowth vegetation and hence, with increasing structural complexity of regenerating vegetation. The tree diameter class index increased from 32.1% in a 9-year secondary forest to 69.0% in an 80-year-old secondary forest in Columbia and Venezuela and from 0.4% in a 1-year fallow to 20.9% in 10-year regrowth vegetation in southwestern Nigeria. In semi-arid savanna in northern Ethiopia, the woody/herbaceous plants ratio index increased from 18.1% in a 5-year protected grazing enclosure to 75.1% in 15-year protected enclosure, relative to the status of 20-year enclosure. The indices generally had correlations of 0.6-0.90 with species richness and Simpson's/Margalef's species diversity, implying that they are appropriate measures of ecosystem development over time. The proposed indices also had strong and positive correlations with soil organic carbon and nutrients. They are therefore, significant indicators of fertility status.
본 연구는 하천복원사업의 전 과정에서 활용될 수 있는 법 제도적 지침과 기준을 제공하고 하천사업의 성과를 진단 평가할 수 있는 한국형 표준화된 하천환경 평가체계 구축과정의 일환으로서 하천생태계의 수변 및 수서환경을 대변할 수 있는 4개의 생물 분류군, 즉 식생과 조류, 그리고 저서 무척추동물과 어류의 평가지표 및 기준 등 평가체계를 구축하였다. 구체적으로 생물적 특성의 평가지표 및 기준을 정리하면, 식생의 경우 식생 다양도와 식생 복잡도, 그리고 식생 자연도 등 3가지 지수의 조합을 통한 하천 식생군집의 구조적 특성을 정량적으로 평가할 수 있도록 하였다. 저서 무척추동물과 어류, 그리고 조류의 경우도 선진 기법의 과학적 근거를 바탕으로 우리나라 하천특성에 적합하도록 생물적 자료의 평가등급 획정에 따른 정량적인 생물지수 평가법을 제안하였다. 아울러 하천환경 자연도의 한 부문인 생물적 특성의 평가를 위하여 이들 4개 생물분류군의 가중치를 적용한 종합 생물지수 및 평가등급화 방안을 제시하였으며, 이에 대한 시험하천의 적용결과에서도 생물분류군 간 비교적 일관성 있게 하천환경의 특성을 반영하고 있는 것으로 분석되었다.
Choi, Yoon Jo;Cho, Han Jin;Hong, Seung Hwan;Lee, Su Jin;Sohn, Hong Gyoo
대한공간정보학회지
/
제24권4호
/
pp.3-11
/
2016
Sixty four percent of Korean territory consists of forest which is fragile for forest fire. However, it is difficult to detect the disaster-induced damages due to topographic complexity in mountainous areas and harsh weather conditions. For this reason, satellite imaging systems have been widely utilized to detect the damage caused by forest fire. In particular, ground vegetation condition can be estimated from multi-spectral satellite images and change detection technique has been used to detect forest fire damages. However, since Korea has clear four seasons, simple change detection technique has limitation. In this regard, this study applied the NDVI(normalized difference vegetation index) annual cycle modeling technique on time-series of Landsat images from 1991 to 2007 to analyze influence of forest fire of Yangyang-gun, Gangwon-do in 2005 on vegetation condition. The encouraging result was obtained when comparing the areas where forest fire occurs with non-damaged areas. The mean value of NDVI was decreased by 0.07 before and after the forest fire. On the other hand, annual variability of NDVI had been increasing and peak value of NDVI was stationary after the forest fire. It is interpreted that understory vegetation was seriously damaged from the forest fire occurred in 2005.
The utilization of multispectral imaging systems (MIS) in remote sensing has become crucial for large-scale agricultural operations, particularly for diagnosing plant health, monitoring crop growth, and estimating plant phenotypic traits through vegetation indices (VIs). However, environmental factors can significantly affect the accuracy of multispectral reflectance data, leading to potential errors in VIs and crop status assessments. This paper reviewed the complex interactions between environmental conditions and multispectral sensors emphasizing the importance of accounting for these factors to enhance the reliability of reflectance data in agricultural applications.An overview of the fundamentals of multispectral sensors and the operational principles behind vegetation index (VI) computation was reviewed. The review highlights the impact of environmental conditions, particularly solar zenith angle (SZA), on reflectance data quality. Higher SZA values increase cloud optical thickness and droplet concentration by 40-70%, affecting reflectance in the red (-0.01 to 0.02) and near-infrared (NIR) bands (-0.03 to 0.06), crucial for VI accuracy. An SZA of 45° is optimal for data collection, while atmospheric conditions, such as water vapor and aerosols, greatly influence reflectance data, affecting forest biomass estimates and agricultural assessments. During the COVID-19 lockdown,reduced atmospheric interference improved the accuracy of satellite image reflectance consistency. The NIR/Red edge ratio and water index emerged as the most stable indices, providing consistent measurements across different lighting conditions. Additionally, a simulated environment demonstrated that MIS surface reflectance can vary 10-20% with changes in aerosol optical thickness, 15-30% with water vapor levels, and up to 25% in NIR reflectance due to high wind speeds. Seasonal factors like temperature and humidity can cause up to a 15% change, highlighting the complexity of environmental impacts on remote sensing data. This review indicated the importance of precisely managing environmental factors to maintain the integrity of VIs calculations. Explaining the relationship between environmental variables and multispectral sensors offers valuable insights for optimizing the accuracy and reliability of remote sensing data in various agricultural applications.
고해상도(Very High Resolution; VHR) 위성영상을 이용한 재난 피해 평가는 신속한 피해 정보 추출과 함께 세부적인 피해 정보 획득이 가능하다. 하지만 일반적으로 VHR 위성의 낮은 영상 취득 주기로 인해 재난 발생 전 VHR 영상의 수급은 제한적이며, 재난 발생 후 영상만으로는 피해 지역과 미피해 지역의 정확한 식별에 한계가 존재한다. 이에 본 연구에서는 산불 발생 후 VHR 위성영상과 GIS (Geographic Information System) 데이터를 이용하여 국내 산불 피해 지역에 대한 변화 탐지를 수행하였다. 산불 발생 전 VHR 영상을 대체하기 위한 GIS 데이터로는 토지피복도가 사용되었으며, 산불 발생 전 토지피복 현황에 대한 공간정보를 이용하여 산불발생 전 NIR (near-infrared) 영상을 시뮬레이션하였다. 변화 탐지 과정에서는 NDVI (Normalized Difference Vegetation Index) 상관도 기반의 변화 탐지 기법을 적용하였으며, superpixel 기반의 영상 분석을 통해 영상 분석의 복잡도를 감소시키는 동시에 VHR 영상의 디테일을 보존하고자 하였다. 제안 기법은 2019년 발생한 강원도 산불 지역에 대해 검증되었으며, 두 연구 지역에 대해 모두 98% 이상의 높은 전체 정확도와 0.97 이상의 높은 F1-score 값을 제시하였다.
본 논문에서는 농작물 다중 분광 이미지에 대해 특징 융합 기법을 이용하여 의미론적 분할 성능을 향상시키기 위한 프레임워크를 제안한다. 스마트팜 분야에서 연구 중인 딥러닝 기술 중 의미론적 분할 모델 대부분은 RGB(red-green-blue)로 학습을 진행하고 있고 성능을 높이기 위해 모델의 깊이와 복잡성을 증가시키는 데에 집중하고 있다. 본 연구는 기존 방식과 달리 다중 분광과 어텐션 메커니즘을 통해 모델을 최적화하여 설계한다. 제안하는 방식은 RGB 단일 이미지와 함께 UAV (unmanned aerial vehicle)에서 수집된 여러 채널의 특징을 융합하여 특징 추출 성능을 높이고 상호보완적인 특징을 인식하여 학습 효과를 증대시킨다. 특징 융합에 집중할 수 있도록 모델 구조를 개선하고, 작물 이미지에 유리한 채널 및 조합을 실험하여 다른 모델과의 성능을 비교한다. 실험 결과 RGB와 NDVI (normalized difference vegetation index)가 융합된 모델이 다른 채널과의 조합보다 성능이 우수함을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.