
1. Introduction

Forest with high ratio of coniferous trees consists 

of 64 % of Korean territory and this property makes 

the land vulnerable to forest disaster(Byun, 2014). 

Yangyang-gun, Gangwon-do which has superiority of 

coniferous trees represents a vegetation characteristic 

of Korea. A damaged area from a forest fire which 

occurred in 2005 at Yangyang-gun was mostly 

comprised of pine forest(Kyosu newspaper, 2005). To 

prevent further damages over the area local 

authorities decided to plant deciduous trees which 

have fire-resistant properties. This decision gave the 

researcher an responsibilities to monitor the area 

using the state-of-art technology. 

Generally there are two techniques used for 

monitoring vegetation; field surveying and remote 

sensing method. Field surveying can be an 

appropriate method to monitor the small details about 

the condition of vegetation but  its application is 

limited when applying to the extensive areas and 

when obtaining time series data from the past. 

Remote sensing technique, on the other hand, is 

widely used to monitor the wide and unaccessible 

areas. It also provides useful information of the past 

if satellite imagery has been acquired periodically. 

Landsat series, for example, first launched in 1972 

have provided not only extensive coverage but also 

have extensively acquired many imagery over the 

same site. In addition with its capability to acquire 
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Abstract

Sixty four percent of Korean territory consists of forest which is fragile for forest fire. However, it is difficult to 

detect the disaster-induced damages due to topographic complexity in mountainous areas and harsh weather 

conditions. For this reason, satellite imaging systems have been widely utilized to detect the damage caused by 

forest fire. In particular, ground vegetation condition can be estimated from multi-spectral satellite images and 

change detection technique has been used to detect forest fire damages. However, since Korea has clear four 

seasons, simple change detection technique has limitation. In this regard, this study applied the NDVI(normalized 

difference vegetation index) annual cycle modeling technique on time-series of Landsat images from 1991 to 2007 

to analyze influence of forest fire of Yangyang-gun, Gangwon-do in 2005 on vegetation condition. The encouraging 

result was obtained when comparing the areas where forest fire occurs with non-damaged areas. The mean value of 

NDVI was decreased by 0.07 before and after the forest fire. On the other hand, annual variability of NDVI had 

been increasing and peak value of NDVI was stationary after the forest fire. It is interpreted that understory 

vegetation was seriously damaged from the forest fire occurred in 2005.
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the imagery using multi-spectral bands, Landsat 

series have been widely used in the science 

community because the images are free to the general 

public since 2008. 

Many studies related to the vegetation condition 

have been done in the field of drought monitoring, 

forest fire identification, agricultural productivity 

estimation, and vegetation regeneration monitoring 

(Labus et al., 2002; Peters et al., 2002; van Leeuwen, 

2008; Vila et al., 2010). However, in most of these 

studies, vegetation conditions of a certain period have 

been represented by some indicies in an individual 

satellite image. Accordingly, analysis of forest fire 

effect has been usually conducted based on the 

indices extracted from an individual image. However, 

since Korea has distinctive seasons, the characteristic 

of satellite imagery which has a periodicity is limited 

to analyze vegetation variability. To overcome these 

barriers, a technique which could reflect a continuity 

of vegetation cover is critical. Beck et al.(2006) 

developed a double logistic function model to 

describe NDVI(normalized difference vegetation 

index) time series in high-latitude environments. 

Verbesselt et al.(2010) presented a generic approach 

for detection and characterization of change in time 

series, which can robustly detect change. Jung et al. 

(2013) proposed harmonic model to characterize 

patterns of variation in MODIS NDVI time series 

data from 2006 to 2012. But when the change of data 

vary greatly it is difficult to apply this model.

Temperature is a primary factor affecting the rate 

of plant development(Hatfield and Prueger, 2015). Ha 

et al.(2007) also demonstrated that vegetation 

condition is closely related with average temperature. 

Bechtel(2012) proposed annual temperature cycle 

model which is approximated with a constant term 

plus sine function to characterize the annual cycle of 

land surface temperature with Landsat archives. Hong 

et al.(2015) applied annual temperature cycle model 

proposed by Bechtel(2012) to identify the variation 

of temperature inside the city. And they proved that 

the model fitted well in South Korea. 

In this study, we extended the annual temperature 

cycle model to analyze vegetation variability before 

and after a forest fire. Yangyang-gun, Gangwon-do 

was selected as an experiment site where big forest 

fire had frequently occurred since 1960(Lee et al., 

2012). To analyze the influence of forest fire on the 

model parameters, nine AOIs(area of interest) were 

set as forest fire-affected area, area nearby the forest 

and mountainous area. To improve precision of the 

model, effects of clouds and cloud shadows were 

excluded by using Fmask(function of mask) 

algorithm and then outliers were removed by 

RIRLS-based(robust iteratively reweighted least 

squares) filtering technique. After investigating the 

NDVI trend using the NDVI annual cycle model, the 

seasonal changes of NDVI values using single 

Landsat images were analyzed and compared with 

the results of NDVI annual cycle modeling. 

2. Study Site and Materials

2.1 Study Site

The study site locates in Yangyang-gun, Gangwon- 

do. A severe forest fire had occurred for 32 hours 

from April 4 to 6, 2005. Approximately 973 hectares 

of forest and Naksansa Temple were affected by the 

forest fire. Study area covers approximately 

212,095,800 including both forest fire-affected 

area and non-affected area. Fig. 1 shows location of 

our study area and Fig. 2 shows the location of AOIs 

Figure 1. Location of study area: (a) Gangwon-do, (b) 

Yangyang-gun, (c) forest fire-damaged areas 

(2005/05/30)
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Figure 2. Location of AOIs

to identify the influence of forest fire on the NDVI 

annual cycle model.

In Fig. 2, the areas of 1, 2, and 3 indicate the areas 

affected by the forest fire, 4 and 5 the areas nearby 

the forest fire events, and 6, 7, 8, and 9 the 

mountainous areas, respectively. 

2.2 Satellite Imagery

In this study, we used series of Landsat TM 

images. For maintaining consistency, Landsat ETM+ 

and OLI were not used in this study. Table 1 shows 

the numbers of Landsat TM scenes covering the 

study site. There were total 296 images available 

from 1991 to 2010. However, as shown in Table 1, 

the number of Landsat images after 2008 was not 

sufficient to apply the trend analysis of vegetation. 

Therefore, we performed the trend analysis only 

using 285 images obtained from 1991 to 2007 over 

the study areas.

year
No. 
of 

Image
year

No. 
of 

Image
year

No. 
of 

Image
year

No. 
of 

Image

1991 16 1996 16 2001 18 2006 21

1992 13 1997 16 2002 15 2007 15

1993 13 1998 18 2003 17 2008 1

1994 10 1999 18 2004 18 2009 5

1995 21 2000 21 2005 19 2010 5

Table 1. Number of Landsat TM images capturing 

Yangyang-gun, Gangwon-do from 1991 to 

2010

3. Satellite Image Processing

3.1 Image Preprocessing

Since Landsat data are provided as DN(digital 

number) images with a range between 0 and 255, it 

is required to convert DN value into reflectance 

value() when performing the land surface analysis. 

In this study, the algorithms proposed by Chander 

and Markham(2003) and NASA(2013) were applied 

to convert DN values into reflectance values. When 

multiple images are used, the effect caused by 

different solar zenith angles and the exoatmospheric 

solar irradiances can be compensated by converting 

original pixel values into reflectance(Chander and 

Markham, 2003). The formulas used for the 

conversion are listed in Eqs. (1) and (2). 

  ∙         (1)

  ∙ cos

 ∙  ∙ 


       (2)

where,

 : radiance at the sensor’s aperture 

 ∙  ∙ 

 : original pixel value 

 : gain value for a specific band

 : bias value for a specific band

 : unitless planetary reflectance

 : Earth-Sun distance in astronomical 

units

 : mean solar exoatmospheric irradiance

 : solar zenith angle

3.2 Noise Filtering

Since Landsat TM image typically includes cloud 

and cloud shadow pixels, they could make 

observation impossible and have an influence on the 

results of ground condition analysis. To release the 

influence of cloud and cloud shadow pixels, it is 

required to remove the cloud and cloud shadow 

pixels before the actual analysis. In this study, the 

noise filtering algorithm proposed by Zhu and 

Woodcock(2012) was applied. This algorithm can 

easily detect pixels of clouds and cloud shadows with 

high accuracy. The algorithm was conducted in two 
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steps. In its first step the object-based technique for 

classifying cloud and cloud shadow pixels is 

performed. The technique is called Fmask algorithm. 

Since the areas covered by clouds and cloud shadows 

present lower temperature than other areas, the 

shadow pixels can be extracted using the thermal 

infrared band information of Landsat image(Vermote 

and Saleous, 2007). After this, clouds and cloud 

shadows were matched based on the similarity of 

objects and sun angle.

Almost all cloud and cloud shadow pixels can be 

removed by Fmask, but some noise pixels might still 

remain. To remove the noise pixels and minimize the 

distortion caused by the noise pixels, RIRLS model 

was additionally adopted after performing the Fmask 

algorithm(Street et al., 1988; O’Leary, 1990; Zhu et 

al., 2012; Zhu and Woodcock, 2014). The pixels 

having lower or higher values than the matched value 

in the RIRLS model were filtered out by considering 

them as outliers. RIRLS model can be represented by 

Eq. (3).

 cos

sin




cos

sin




(3)

Where,

 : Julian date

 : number of days per year (T= 365)

 : number of years of Landsat data

 : coefficient for overall values for 

NDVI

  : coefficients for intra-annual change 

for NDVI

   : coefficients for inter-annual change 

for NDVI

 : predicted value for the NDVI at Julian 

date x based on RIRLS fitting.

3.3 NDVI Calculation

The Landsat TM imagery consists of 7 spectral 

bands. From the multi-spectral imagery, the indices 

which represents ground condition can be computed 

with a combination of these bands. NDVI is the most 

powerful index to analyze the traits of vegetation. 

The NDVI is computed by the reflectance values of 

the near infrared band(; band 4) and red band

(; band 3) on Landsat TM image. The formula 

to calculate NDVI is Eq. (4). 




                (4)

3.4 NDVI Annual Cycle Model

Since ground vegetation condition generally 

follows annual variation trends, the methodology 

which can reflect continuity is required. Bechtel 

(2012) proposed annual temperature cycle model 

defined by sine function to characterize the annual 

cycle of land surface temperature with time series of 

Landsat images. To analyze the vegetation variability, 

this paper proposes annual NDVI cycle model 

applying annual temperature cycle model proposed 

by Bechtel(2012) using a time series of Landsat 

images. Annual cycle model is modelled with sine 

function and can be represented by Eq. (5).

  ∙ sin 


             (5)

Where,

 : annual cycle model

 : mean of NDVI

 : amplitude of the annual NDVI cycle

 : optional phase shift from the equinox

 : day of the cycle

,  and  of Eq. (5) were estimated by an 

unconstrained nonlinear optimization algorithm, 

which minimizes the square sum of the residuals 

(Bechtel, 2012).

4. Results

4.1 Noise Filtering

Fig. 3 shows Landsat TM image on May 14, 2005 

and detected cloud and cloud shadow pixels in the 

image after applying the Fmask algorithm. As shown 

in Fig. 3(b), cloud and cloud shadow pixels were 

extracted.  
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(a) (b)

Figure 3. Results of applying Fmask: (a) Landsat 

imagery (2005/5/14), (b) cloud and cloud 

shadow pixels extracted from Landsat 

imagery by Fmask (white: cloud, gray: 

cloud shadow)

Number of images

Before 

filtering

After Fmask 

filtering

After RIRLS 

filtering

AOI #1

285

147 107

AOI #2 156 116

AOI #3 152 115

AOI #4 146 99

AOI #5 147 108

AOI #6 140 97

AOI #7 153 108

AOI #8 148 107

AOI #9 149 105

Table 2. Results of Fmask and RIRLS filtering

In order to create a stable annual cycle model, the 

remained noise pixels after applying Fmask were 

filtered out by RIRLS model. Forest fire caused 

significant changes on the vegetation conditions. For 

this reason, NDVI annual cycle modeling was 

conducted separately before and after on April 4, 

2005, the day when a huge forest fire occurred. 

Table 2 summarized the number of available 

images in each of the AOI after applying Fmask 

algorithm and RIRLS-based filtering technique. As 

shown in  Table 2, about 97~116 scenes in each AOI 

after filtering were available among total 285 Landsat 

images. In other words, 59~66% of total images we 

used were filtered out in the final stage. 

4.2 NDVI Annual Cycle Models

From the Landsat images of which pixels of cloud 

and cloud shadow were removed, NDVI annual cycle 

model of each AOI were calculated. Fig. 4 shows the 

results of the annual cycle modeling. As shown in 

Fig.  4,  the seasonal variation of NDVI were 

identified and the NDVI values of each AOI were 

fitted to an annual cycle model. In particular, as 

shown in Figs. 4(a), 4(b) and 4(c), the annual cycle 

models of AOIs #1 to #3 where forest fire occurred 

were changed. Moreover, while AOIs #4 to #5 

AOI Change Mean Amplitude Shift

Affected area

AOI #1
Before forest fire 0.4165 0.1668 0.9640

After forest fire 0.3448 0.2420 0.8439

AOI #2
Before forest fire 0.3817 0.1621 0.7641

After forest fire 0.3011 0.2500 0.7267

AOI #3
Before forest fire 0.3884 0.1620 0.7965

After forest fire 0.3135 0.2361 0.7511

Nearby area

AOI #4
Before forest fire 0.4300 0.1701 0.8758

After forest fire 0.4198 0.2178 0.8906

AOI #5
Before forest fire 0.4110 0.1596 0.7869

After forest fire 0.3935 0.2144 0.8500

Mountainous area

AOI #6
Before forest fire 0.4184 0.3087 0.9648

After forest fire 0.4743 0.3012 1.1825

AOI #7
Before forest fire 0.4311 0.3113 1.0424

After forest fire 0.4578 0.3004 1.1090

AOI #8
Before forest fire 0.4231 0.3210 0.9883

After forest fire 0.4482 0.2935 1.1496

AOI #9
Before forest fire 0.4441 0.2696 0.9773

After forest fire 0.4771 0.2592 1.0935

Table 3. Changes in annual NDVI cycle models before and after forest fire in 2005



Figure 4. Annual NDVI cycle model of each AOI: (a) to (c) AOIs damaged by forest fire, (d) to (e) 

AOIs nearby forest fire-damaged areas, (f) to (i) AOIs in mountainous areas
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showed similar trends before and after the forest fire, 

the NDVI mean values in AOIs #1 to #3 dropped 

sharply about 0.07 after the forest fire. Meanwhile, 

NDVI mean values in AOIs #4 to #5 decreased about 

0.02 and AOIs #7 to #9 increased about 0.03. The 

change of NDVI mean values in AOIs #4 to #5 

displayed the insensible change but both areas 

showed a decreasing tendency. As both areas are the 

forest fire nearby area, it might be affected by the 

forest fire.

Amplitude of the annual NDVI cycle showed an 

increasing tendency of the forest fire-affected areas 

and nearby areas after the forest fire. In particular, 

the peak values of NDVI in Fig. 4 were stable even 

after forest fire. The reason why NDVI peak values 

were not much changed after the forest fire is that it 

might be influenced by reforestation program such as 

‘Forest restoration plan at Yangyang special disaster 

district’ and ‘Forest management development project 

at major landscape area’(Korea Forest Service, 2013). 

On the other hand, the NDVI trough values in Fig. 

4 were distinctly decreased after the forest fire. It 

was because the NDVI trough values generally 

present vegetation condition in winter seasons and 

the influence of the upper layer of trees is excluded.  

Therefore, the results demonstrated that the 

understory vegetation became bare soil after the 

forest fire.

At the mountainous areas, mean and amplitude 

values of the annual NDVI cycle are larger than 

those of the other areas. For AOIs #6 to #9, NDVI 

mean values increased by 0.02 and amplitude of 

annual cycle decreased by 0.01 after the forest fire. 

It is opposite trend with other areas, in which showed 

decreasing trend in mean values of NDVI and 

increasing trend in amplitude. The change of 

vegetation variability was insignificant and consistent 

tendency was observed.

On the other hand, the difference of the phase shift 

values before and after the forest fire was not 

significant because of the low spatial variability. The 

results implied that there was scanline error and time 

interval of the images was not too long to have 

influence on annual cycle model (Bechtel, 2012; 

Hong et al., 2015). 

4.3 Single Imagery Analysis

To confirm the change tendency resulted from 

AOI Change
January

2004-2010

May

2003-2009

August

2004-2007

November

2003-2005

Affected area

AOI #1
Before forest fire 0.2777 0.4340 0.6310 0.3735

After forest fire 0.2683 0.5424 0.6318 0.3203

AOI #2
Before forest fire 0.2948 0.3578 0.6219 0.3541

After forest fire 0.2118 0.4706 0.6078 0.2341

AOI #3
Before forest fire 0.2510 0.3092 0.5231 0.3114

After forest fire 0.2175 0.4132 0.5262 0.2627

Nearby area

AOI #4
Before forest fire 0.1501 0.1894 0.2611 0.1685

After forest fire 0.1540 0.2227 0.2636 0.1869

AOI #5
Before forest fire 0.1478 0.1740 0.2817 0.1711

After forest fire 0.1681 0.2295 0.2846 0.1967

Mountainous area

AOI #6
Before forest fire 0.1130 0.4098 0.5975 0.2313

After forest fire 0.2032 0.5959 0.6471 0.2440

AOI #7
Before forest fire 0.0948 0.5202 0.6006 0.2302

After forest fire 0.1825 0.6046 0.6474 0.1940

AOI #8
Before forest fire 0.0524 0.3440 0.4240 0.1806

After forest fire 0.1470 0.4115 0.3481 0.1585

AOI #9
Before forest fire 0.2303 0.5924 0.6785 0.3833

After forest fire 0.3236 0.6450 0.7092 0.3535

Table 4. Changes of NDVI mean values before and after forest fire in 2005(analyzed images captured on 9 May 

2003, 1 November 2003, 20 January 2004, 31 August 2004, 22 November 2005, 24 August 2007, 25 

May 2009 and 5 February 2010)
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NDVI annual cycle model, NDVI mean values of 

each AOIs compared with the results using a singe 

image before and after the forest fire. It was difficult 

to get the available imagery to analyze annual and 

seasonal change of NDVI mean values before and 

after the event. Therefore, the images captured on 9 

May 2003, 1 November 2003, 20 January 2004, 31 

August 2004, 22 November 2005, 24 August 2007, 

25 May 2009 and 5 February 2010 were analyzed. 

The results of analyzing with the imagery on January 

or February, May, August and November are listed 

on Table 4. The change tendency is similar to the 

results of NDVI annual cycle model. The NDVI 

mean values decreased on February and November 

and increased on May and August at the area 

affected by the forest fire. The effects in February 

and November are estimated because of the forest 

fire, and in May and August because of the influence 

of the reforestation program which performed after 

the event. 

To detect the forest fire-damaged areas, single 

image analysis can be one of simple and reasonable 

solutions. However, it is difficult to obtain cloud-free 

data and analyze changes in annual trend. This is 

because each single image is captured in different 

time and environmental condition. The deficiency of 

data makes it difficult to decide whether the change 

is caused by the event or just affected by seasonal  

or climate change. In this regard, the NDVI annual 

cycle model using multi-temporal images can be 

useful to analyze overall tendency as well as change 

detection about specific event, because this model 

can simultaneously reflect seasonal effects and annual 

trend.

5. Conclusion

In this study, NDVI annual cycle model was 

proposed for vegetation analysis using Landsat 

images of Yangyang-gun, Gangwon-do. The time 

series of Landsat images before and after the forest 

fire on 2005 were used for validation of our 

algorithms. 

Since the Landsat imagery might include noise 

pixels such as clouds and cloud shadows, Fmask and 

RIRLS algorithms were applied to remove the noise 

pixels before applying annual cycle model. As a 

result of filtering, about 180 scenes of Landsat 

images among 285 scenes could be filtered and more 

stable modelling was conducted.

The NDVI annual cycle model could present the 

vegetation variability and the impact of the forest fire 

on vegetation. The mean values of NDVI in the 

forest fire-affected area were decreased by 0.07 and 

those in nearby area were dropped by 0.02. 

Accordingly, the amplitude of the NDVI annual cycle 

in the forest fire-affected area and nearby area had 

been increased after the forest fire. In particular, 

increase of trough values of the cycle models were 

higher than those of peak values. It implied that the 

understory vegetation was seriously damaged by the 

forest fire. 

From the result of the experiment, it can be stated 

that NDVI annual cycle model is useful to monitor 

vegetation condition after a disasterous event. 

However, it is required for the analyzer to seriously 

consider quality, quantity and time period of data. In 

this sense, data of KOMPSAT 1, 2, 3 and 3A series 

which have very high spatial resolution and have 

been periodically collected can be a precious dataset 

and make valuable and precise research possible.
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