• Title/Summary/Keyword: Vegetation change

Search Result 864, Processing Time 0.029 seconds

The Trend Analysis of Vegetation Change Applied to Unsupervised Classification Over East Asia: Using the NDVI 10-day data in 1999~2010 (무감독분류 기법을 이용한 동아시아지역의 식생변화 경향분석: 1999~2010 NDVI 10-day 자료를 바탕으로)

  • Kim, Sang-Il;Han, Kyung-Soo;Pi, Kyoung-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.153-159
    • /
    • 2011
  • Vegetative land cover is an important variable many Earth system process, general circulation and carbon exchange model requires vegetative cover as boundary layer necessary to run model. The purpose of this study is to detect and to understand land surface change. To monitor changes of East Asia vegetation, we used NDVI 10-day MVC data derived from SPOT VEGETATION during 12 years from 1999 to 2010. Finally, according to the land cover of classified class, we performed analysis for dynamic zone(positive change zone and negative change zone), static zone in 1999, 2010. Therefore, land covers corresponding to each class have appeared change by 2010. Land cover change was confirmed by analyzing data during 12 years which appeared vegetation change of surrounding the actual desert area to east.

The Monitoring of Vegetation Change in Complementary Village Forest according to Management - Centered on Complementary Village Forests of Seochon and Weonyeonjang in Jinan County - (관리에 따른 마을비보숲의 식생 변화 - 진안 서촌 마을비보숲과 원연장 마을비보숲을 사례로 -)

  • Park, Jae Chul;Zhang, Xiao Dong
    • Journal of Korean Society of Rural Planning
    • /
    • v.24 no.2
    • /
    • pp.69-78
    • /
    • 2018
  • The purpose of this study is on identifying vegetation change through monitoring representative complementary village forests according to different management. For this, two of complementary village forests around Mai mountain which many ones remain were selected. Those are complementary village forests of Seochon and Wonyeonjang. Seochon forest is a representative one which is managed naturally and Wonyeonjang one is a representative one which is managed artificially. The field survey for monitoring was preformed in 2002 and 2007, 2016. D(Dominant degree) and S(Sociability degree) were measured by Brown-Blanquet's method in field survey. Through the analysis and review of survey data, the change of species richness, appearing species characteristics, species composition and layer structure etc. according to different management was monitored. As a result, it can be seen that natural succession has increased species diversity, improved vegetation structure and circulation of complementary village forest. On the other hand, excessive anthropomorphic management was found to be detrimental to the health of the forests and to the vegetation structure and species composition. And it was found that excessive management threaten sustainability and periodical proper management is necessary. Through this review, the useful management direction of complementary village forests was suggested.

A Study of the Relationship between In-stream Vegetation and Sediment Transport by a Hydraulic Model Experiment (실험수로에서 식물군락에 의한 유사거동 양상에 관한 실험적 고찰)

  • Lee, Sam-Hee
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.6
    • /
    • pp.753-762
    • /
    • 2002
  • In-stream vegetation is an essential element of a stream channel. Vegetation plays an important role in flood control and the natural environment in stream channels. This research investigates the relationship between in-stream vegetation and stream changes. This study investigates the distribution characteristic of vegetation in some rivers of Korea. Although there are many physical factors that cause changes to streams, this research verified that in-stream vegetation caused sediment deposition. A hydraulic model experiment was conducted. Tests were conducted in a simulated gravel bed stream (bed slope 1/200) with Phragmites japonica. The average diameter of the bed load used was 0.3 mm and 27 kg were uniformly supplied for 1 hour under same hydraulic conditions. The deposition and scouring as well as the change of flow differed according to the density and arrangement of the Phragmites japonica. In-stream vegetation and stream channel change are closely related because deposition and scouring affects the distribution of vegetation.

A Change Detection of Urban Vegetation of Seoul with Green Vegetation Index Extracted from Landsat Data (Landsat 녹색식생지수를 이용한 서울시 도시녹지 변화 조사)

  • 박종화
    • Korean Journal of Remote Sensing
    • /
    • v.8 no.1
    • /
    • pp.27-43
    • /
    • 1992
  • The purpose of this study is to detect and evaluate the change of urban vegetation of Seoul during 1980s. Large areas covered with agricultural crops or forests were converted to residential and commercial areas, roads, schools, sports complexes, etc. There were also widespreas concerns on the deterioration of the quality of urban vegetation due to severe air pollution, overcrowding of nature parks, and idling of farm lands by land speculators. The image used for this study were MSS(Oct. 4, 1979) and TM(Apr. 26, 1990). The Green Vegetation Index of Kauth & Thomas(1976) was for the analysis. The GVI were resampled with 75$\times$75m grids and overlaid with the jurisdictional boundaries of 22 districts of Seoul. The results were reclassified to 6 classes, class 6 representing grids with the most vigorous vegetation or the best vegetation improvement in 1980s. The finding of this study can be summarized as follows : First, the most vigorous vigorous vegetation, in terms of GVI, of the 1979 image can be found at paddy fields located on alluvial near Han River. Broad-leaf forests located on hilly terrains have higher GVI than conifers located on the upper-parts of mountains. The average GVI of the northern part and southern part of Han River are 3.56 and 3.74, respectively. The main reason why the southern part has higher GVI is that there are more prime agricultural lands. Districts of Kangseo, Yangcheon, and Songpa have the highest percentage of grids of GVI class 6, and the percentages are 3.55 %, 3.47 %, and 2.69 %, respectively. Second, the most vigorous vegetation of the 1990 image can be found at the grass lands of the Yongsan golf club and the Sungsu horse racing track. The GVI of farm lands is lower than forest because most agricultural crops are at the early stage of growing season when the TM image was taken. The size of built-up area is much larger than of 1979. On the other hand, vegetation patches surrounded by developed area become smaller and have stronger contrast to surrounding area. The average GVI of the northern part and southern part of Han River are 3.57 and 3.51, respectively. The main reason why the southern part has lower GVI is the at more large-scale urban development projects were carried out in there during 1980s. Districts of Tobong, Nowon, and Seocho have the highest percentage of class 6, and the perecentages are 16.58 %, 10.14 %, and 8.50% respectively. Third, the change of urban vegetation in Seoul during 1980s are significant. Grids of GVI change classes 1 and 2, which represent severe vegetation loss, occupy 15.97% of Seoul. Three districts which lost the most vegetation are Yangcheon, Kangseo, and Songpa, where the percentages of GVI class 1 are 13.42%, 13.39% and 9.06%, respectively. The worst deterioration was mainly caused by residential developments. On the other hand, the vegetation of some part of Seoul improved in this period. Grids of GVI change classes 5 and 6 occupy 9.83 % of Seoul. Distircts of Jung, Yongsan, and Kangnam have the highest percentage of grids with GVI change classes 5 and 6, and their percentages are 22.31%, 19.17%, and 13.66%, respectively. The improvement of vegetation occurred in two areas. Forest vegetation is generally improving despite of concerns based on air pollution and heavy use by recreationists. Vegetation in open spaces established in riverside parks, large residential areas, and major public facilities are also improving.

A Study on Environmental Monitoring of Open-cut Mining Ground Using Remote Sensing Technique

  • Tanaka Yoshiki;Tachiiri Kaoru;Gotoh Keinosuke;Hamamoto Ryota
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.549-552
    • /
    • 2004
  • Since open-cut mining excavates gradually from the top of the mountain, vegetation planting is needed to reduce negative environmental impact on the surrounding environment. Accordingly, this study aimed at performing the environmental monitoring of the open-cut mining ground using the satellite remote sensing technique. As the research technique, in order to grasp the environmental change around the open-cut mining ground, NDVI (normalized difference vegetation index) was calculated, and every year change of the vegetation activity was analyzed. The results of the study showed lower vegetation activity in the open-cut mining ground compared to the surrounding areas and suggested the need for closed monitoring by remote sensing techniques.

  • PDF

The extraction method for the best vegetation distribution zone using satellite images in urban area

  • Jo, Myung-Hee;Kim, Sung-Jae;Lee, Kwang-Jae
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.908-910
    • /
    • 2003
  • In this paper the extraction method for the best suitable green vegetation area in urban area, Daegu, Korea, was developed using satellite images (1994, 1999, Landsat TM). For this, the GIS overlay analysis of GVI (Green Vegetation Index), SBI (Soil Brightness index), NWI (None-Such wetness Index) was performed to estimate the best suitable green vegetation area. Also, the statistical documents, algorithm and Tasseled-Cap index were used to recognize the change of land cover such as cultivation area, urban area, and damaged area. Through the result of this study, it is possible to monitor the large sized reclamation of land by drainage or damaged area by forest fires. Moreover, information with the change of green vegetation and the status of cultivation by GVI, but also moisture content by percentage by NWI and surface class by SBI can be obtained.

  • PDF

Actual Vegetation Potential Natural Vegetation of Pukhansan National Park, Mid-western Korea (북한산국립공원의 현존식생과 잠재자연식생)

  • 이은복
    • The Korean Journal of Ecology
    • /
    • v.20 no.6
    • /
    • pp.439-450
    • /
    • 1997
  • The potential natural vegtation of the Pukhansan National Park area, mid-western Korea, was inferred from the actual vegetation. With the phytosociological classification and field surveys, the actual vegetation map of the park area was made on a scale of 1:25, 000, including fourteen communities. By the analyses of the species diversity, the age structure, the human interferences and various informations on vegetation changes, two pathways of late stage succession from Pinus densiflora forests to the climatic climax were suggested. One is from Quercus serrata forests to Q. mongolica forests throughout the mountain and the other, from Q. variabilis or Q. acutissima forests to Carpinus laxiflora forests in lower parts. Considering the vegetation changes, the potential natural vegetation of the park area mainly composed of Q. mongolica, C. laxiflora, P. densiflora and Zelkova serrata forest as the climatic and/or edaphic climax was inferred.

  • PDF

Forest Patch Characteristics and Their Contribution to Forest-Bird Diversity - Focus on Chungcheong Province Area - (산림패치의 특성이 조류 종 다양성에 미치는 영향분석 - 충청지역을 중심으로 -)

  • Lee, Dong-Kun;Park, Chan;Oh, Kyu-Sik
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.13 no.5
    • /
    • pp.146-153
    • /
    • 2010
  • Urban development typically results in many species being confined to small, isolated and degraded habitat fragments. Fragment size and isolation underpin many studies of modified landscape to prevent biodiversity loss. However, habitat characteristics such as vegetation structure and edge effects are less frequently incorporated in planning. The relative influence of biogeographic (e.g. size, isolation) and vegetation parameters on assemblages is poorly understood, but critical for conservation management. In this study, the relative importance of biogeographic and vegetation parameters in explaining the diversity of forest-interior dwelling birds in forest fragments in Chungcheong Province Area. Fragment size and vegetation characteristics were consistently important predictors of bird diversity. Forestinterior bird richness was influenced by fragment size (0.437), wood age (0.332), wood diameter (0.068), and patch shape (-0.079). To preserve bird diversity of Chungcheong Province Area, it is important to consider differing responses of bird diversity to landscape change, move beyond a focus primarily on spatial attributes (size, isolation) to recognize that landscape change also has profound effects on habitat composition and quality. The result is very useful for long-term aspect of biodiversity conservation plan in regional scale.

Assessment of Vegetation Recovery after Forest Fire

  • Yu, Xinfang;Zhuang, Dafang;Hou, Xiyong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.328-330
    • /
    • 2003
  • The land cover of burned area has changed dramatically since Daxinganling forest fire in Northeastern China during May 6 ? June 4, 1987. This research focused on determining the burn severity and assessment of forest recovery. Burned severity was classified into three levels from June 1987 Landsat TM data acquired just after the fire. A regression model was established between the forest canopy closure from 1999 forest stand map and the NDVI values from June 2000 Landsat ETM+ data. The map of canopy closure was got according to the regression model. And vegetation cover was classified into four types according to forest closure density. The change matrix was built using the classified map of burn severity and vegetation recovery. Then the change conversions of every forest type were analyzed. Results from this research indicate: forest recovery status is well in most of burned scars; and vegetation change detection can be accomplished using postclassification comparison method.

  • PDF

Vegetation Spatial Distribution Analysis of Tundra-Taiga Boundary Using MODIS LAI Data (MODIS LAI 데이터를 이용한 툰드라-타이가 경계의 식생 공간분포분석)

  • Lee, Min-Ji;Han, Kyung-Soo
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.27-36
    • /
    • 2010
  • This study observed distribution of vegetation to confirm change of tundra-taiga boundary. Tundra-taiga boundary is used to observe the transfer of vegetation pattern because it is very sensitive to human activity, natural disturbances and climate change. The circumpolar tundra-taiga boundary could observe reaction about some change. Reaction and confirmation about climate change were definite than other place. This study used Leaf Area Index(LAI) 8-Day data in August from 2000 to 2009 that acquire from Terra satellite MODerate resolution Imaging Spectroradiometer(MODIS) sensor and used K$\"{o}$ppen Climate Map, Global Land Cover 2000 for reference data. This study conducted analysis of spatial distribution in low density vegetated areas and inter-annual / zonal analysis for using the long period data of LAI. Change of LAI was confirmed by analysis based on boundary value of LAI in study area. Development of vegetation could be confirmed by area of grown vegetation($730,325km^2$) than area of reduced vegetation ($22,372km^2$) in tundra climate. Also, area was increased with the latitude $64^{\circ}$ N~$66^{\circ}$ N as the center and around the latitude $62^{\circ}$ N through area analysis by latitude. Vegetation of tundra-taiga boundary was general increase from 2000 to 2009. While area of reduced vegetation was a little, area of vegetation growth and development was increased significantly.