• Title/Summary/Keyword: Vegetation Stress

Search Result 104, Processing Time 0.032 seconds

Evaluation of Thermal and Water Stress on Vegetation from Satellite Imagery

  • Viau, Alain A.;Jang, Jae-Dong;Anctil, Francois
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.165-167
    • /
    • 2003
  • To evaluate the thermal and water stress of vegetation canopy in Southern Qu$\'{e}$bec, leaf water status was evaluated from vegetation indices derived from SPOT VEGETATION images and surface temperature from NOAA AVHRR images. This study was conducted by investigating vegetation conditions for two different periods, from June to August, 1999 and 2000. The vegetation indices were integrated for the evaluating vegetation conditions as a new index, normalized moisture index (NMI). A trapezoid was defined by the NMI and surface temperature, and the thermal and water status of the vegetation canopy was determined according to separate small sections within the trapezoid.

  • PDF

Detection of Drought Stress in Soybean Plants using RGB-based Vegetation Indices (RGB 작물 생육지수를 활용한 콩 한발 스트레스 판별기술 평가)

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Baek, Jae-Kyeong;Kwon, Dongwon;Ban, Ho-Young;Cho, Jung-Il;Seo, Myung-Chul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.340-348
    • /
    • 2021
  • Continuous monitoring of RGB (Red, Green, Blue) vegetation indices is important to apply remote sensing technology for the estimation of crop growth. In this study, we evaluated the performance of eight vegetation indices derived from soybean RGB images with various agronomic parameters under drought stress condition. Drought stress influenced the behavior of various RGB vegetation indices related soybean canopy architecture and leaf color. In particular, reported vegetation indices such as ExGR (Excessive green index minus excess red index), Ipca (Principal Component Analysis Index), NGRDI (Normalized Green Red Difference Index), VARI (Visible Atmospherically Resistance Index), SAVI (Soil Adjusted Vegetation Index) were effective tools in obtaining canopy coverage and leaf chlorophyll content in soybean field. In addition, the RGB vegetation indices related to leaf color responded more sensitively to drought stress than those related to canopy coverage. The PLS-DA (Partial Squares-Discriminant Analysis) results showed that the separation of RGB vegetation indices was distinct by drought stress. The results, yet preliminary, display the potential of applying vegetation indices based on RGB images as a tool for monitoring crop environmental stress.

Assessment of drought stress in maize growing in coastal reclaimed lands on the Korean Peninsula using vegetation index (식생지수를 활용한 한반도 해안 간척지 옥수수의 한발스트레스 해석)

  • Seok In Kang;Tae seon Eom;Sung Yung Yoo;Sung ku Kang;Tae Wan Kim
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.283-290
    • /
    • 2023
  • The Republic of Korea reclaimed land to increase its food self-sufficiency rate, but the yield was reduced due to abnormal climate. In this study, it was hypothesized that rapid and continuous monitoring technology could help improve yield. Using the vegetation index (VI) analysis, the drought stress index was calculated and the drought stress for corn grown in Hwaong, Saemangeum, and Yeongsan River reclaimed tidal land was predicted according to drying treatment. The vegetation index of corn did not decrease during the last 20 days of irrigation when soil moisture rapidly decreased, but decreased rapidly during the 20 days after irrigation. The reduction rate of the vegetation index according to the drying treatment was in the order of Saemangeum>Yeongsan River>Hwaong reclaimed tidal land, and normalized difference vegetation index(NDVI) decreased by approximately 50% in all reclaimed tidal lands, confirming that drought stress occurred due to the decrease in moisture content of the leaves. In addition, structure pigment chlorophyll index (SIPI) and photochemical reflectance index (PRI), which are calculated based on changes in light use efficiency and carotenoids, were reduced; drought stress caused a decrease in light use efficiency and an increase in carotenoid content. Therefore, vegetation index analysis was confirmed to be effective in evaluating and predicting drought stress in corn growing on reclaimed tidal land corn.

A Real Scale Experimental Study for Evaluation of Permissible Shear Stresses on Vegetation Mats (식생매트 허용 소류력 평가를 위한 실규모 실험 연구)

  • Lee, Du Han;Kim, Dong-Hee;Kim, Myounghwan;Rhee, Dong Sop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6151-6158
    • /
    • 2012
  • By the activation of environment-friendly river works, application of vegetation mats is increasing, however, evaluation techniques for hydraulic stability of vegetation mats are not presented. This study is conducted to develop the objective test method for vegetation mats. Two kind of vegetation mats are tested by the real scale experiments, and hydraulic quantities are measured and analyzed to evaluate acting shear stresses. Roughness and shear stress are evaluated by 1 D non-uniform model. After each tests, changes in mat surfaces and sub-soil are evaluated, and from these evaluation, 3 types of mat surface damages and 2 types of sub-soil damages are presented. In the study, the case in which some damages in mat surface don't cause loss of sub-soil, is presented to be in the stable condition. Appling this stable condition and acting shear stresses, permissible shear stresses of vegetation mats are evaluated, and the results show that the reinforced mat with wire netting has more permissible shear stress.

A water stress evaluation over forest canopy using NDWI in Korean peninsula (NDWI를 활용한 한반도 지역의 산림 캐노피에 대한 water stress 평가)

  • Seong, Nohun;Seo, Minji;Lee, Kyeong-Sang;Lee, Changsuk;Kim, Hyunji;Choi, Sungwon;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.2
    • /
    • pp.77-83
    • /
    • 2015
  • Leaf water content is one of important indicators that shows states of vegetation. It is important to monitor vegetation water content using remote sensing for forest management. In this study, we investigated the degree of water stress in Korean peninsula with Normalized Difference Water Index (NDWI) to study the water content of vegetation canopy. We calculated the NDWI using SPOT/VEGETATION S10 channel data over forest from 1999 to 2013. We calculated Simple Moving Average (SMA) to remove temporal noises of NDWI in time series, and used standardized anomaly to investigate temporal changes. We classified the NDWI anomalies into three scales (low, moderate, and high) in order to monitor intuitively. We also investigated suitability of the NDWI as an evaluation criterion about water stress of vegetation canopy by comparing and verifying forest fires damaged area over 150 ha. Consequently, huge forest fire occurred 24 times during the study period. Also, negative anomalies appeared in every forest fire location and their neighboring areas. In particular, we found huge forest fires where NDWI anomalies were in 'high' scale.

Development of Mean Flow Model for Depth-Limited Vegetated Open-Channel Flows (수심의 제한을 받는 침수식생 개수로의 평균흐름 예측모형 개발)

  • Yang, Won-Jun;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.9
    • /
    • pp.823-833
    • /
    • 2010
  • Open-channel flows with submerged vegetation show two distinct flow structures in the vegetation and upper layers. That is, the flow in the vegetation layer is featured by relatively uniform mean velocity with suppressed turbulence from shear, while the flow in the upper layer is akin to that in the plain open-channel. Due to this dual characteristics, the flow has drawn many hydraulic engineers' attentions. This study compares layer-averaged models for flows with submerged vegetation. The models are, in general, classified into two-layer and three-layer models. The two-layer model divides the flow depth into vegetation and upper layers, while the three-layer model further divides the vegetation layer into inner and outer vegetation layers depending on the influence of the bottom roughness. This study compares the two-layer model and the three layer-model. It is found that the two-layer model predicts better the average value of the velocity and the prediction by the three-layer model is sensitive to Reynolds shear stress. In the three-layer model, the mean flow in the inner vegetation layer does not affect the flow seriously, which motivates the proposal of the modified two-layer model. The two-layer model, capable of predicting non-uniform mean velocity, is based on the Reynolds stress which is linear and of power form in the upper and vegetation layers, respectively. Application results reveal that the modified two-layer model predicts the mean velocity at an accuracy similar to the two- and three-layer models, but it predicts poorly in the case of very low vegetation density.

One-Dimensional Model for Flow Resistance of Floodplain Vegetation in Compound Open-Channel Flow (복단면 개수로흐름에서 홍수터 식생의 흐름저항을 반영한 1차원 모형)

  • Park, Moon-Hyeong
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.6
    • /
    • pp.517-524
    • /
    • 2010
  • In this study, the 1D apparent shear stress model for vegetated compound open-channel flows was suggested. To consider the effect of momentum exchange between main channel and floodplain, the eddy viscosity concept was used in the present model. The interfacial eddy viscosity in the interface of main channel and floodplain was determined from the 3D Reynolds stress model. The evaluated interfacial eddy viscosity appears to be good agreement with those proposed previously. To investigate the effect of interfacial eddy viscosity, sensitive analysis was carried out. the computed backwater profiles are nearly identical with respect to the value of the interfacial eddy viscosity. However, the discharge conveyed by the floodplain changes is proportional to the interfacial eddy viscosity. Finally, the changes of the interfacial eddy viscosity due to the vegetation density and vegetation height were examined. The computed results of interfacial eddy viscosity are in proportion to the vegetation density and vegetation height, and the interfacial eddy viscosity has a range of $(2-5)\;{\times}\;10^{-4}$.

Ecohydrologic Analysis on Soil Water and Plant Water Stress : Focus on Derivation and Application of Stochastic Model (토양수분과 식생의 물 압박에 대한 생태수문학적 해석 : 추계학적 모형의 유도와 적용을 중심으로)

  • Han, Suhee;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.99-106
    • /
    • 2008
  • With globally increasing interests in climate-soil-vegetation system, a new stochastic model of soil water and plant water stress is derived for better understanding of the soil water and plant water stress dynamics and their role in water-controlled ecosystem. The steady-state assumption is used for simplifying the equations. The derived model is simple yet realistic that it can account for the essential features of the system. The model represents the general characteristics of rainfall, soil, and vegetation; i.e. the soil moisture constitutes the decrease form of the steady-state and the plant water stress becomes increasing with the steady state when the rainfall is decreased. With this model, further deep study for the effects of soil water and plant water stress on the system will be accomplished.

Correlation Analysis of MODIS Vegetation Indices and Meteorological Drought Indices for Spring Drought Monitoring

  • Park, Jung-Sool;Kim, Kyung-Tak
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.80-83
    • /
    • 2008
  • Diverse researches using vegetation index have been carried out to monitor spring droughts that have frequently occurred since 2000. The strength of the drought monitoring using vegetation index lies in that it can reflect characteristics of satellite images: large area coverage, cyclicity, and promptness. However, vegetation index involve uncertainly caused by diverse factors that affect vegetation stress. In this study, multi-temporal vegetation index is compared with the most representative meteorological drought indices like PSDI, SPI. Based on the results from analyses, usability of vegetation index as a tool of drought analysis is proposed.

  • PDF

Response of Structural, Biochemical, and Physiological Vegetation Indices Measured from Field-Spectrometer and Multi-Spectral Camera Under Crop Stress Caused by Herbicide (마늘의 제초제 약해에 대한 구조적, 생화학적, 생리적 계열 식생지수 반응: 지상분광계 및 다중분광카메라를 활용하여)

  • Ryu, Jae-Hyun;Moon, Hyun-Dong;Cho, Jaeil;Lee, Kyung-do;Ahn, Ho-yong;So, Kyu-ho;Na, Sang-il
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1559-1572
    • /
    • 2021
  • The response of vegetation under the crop stress condition was evaluated using structural, biochemical, and physiological vegetation indices based on unmanned aerial vehicle (UAV) images and field-spectrometer data. A high concentration of herbicide was sprayed at the different growth stages of garlic to process crop stress, the above ground dry matter of garlic at experimental area (EA) decreased about 46.2~84.5% compared to that at control area. The structural vegetation indices clearly responded to these crop damages. Spectral reflectance at near-infrared wavelength consistently decreased at EA. Most biochemical vegetation indices reflected the crop stress conditions, but the meaning of physiological vegetation indices is not clear due to the effect of vinyl mulching. The difference of the decreasing ratio of vegetation indices after the herbicide spray was 2.3% averagely in the case of structural vegetation indices and 1.3~4.1% in the case of normalization-based vegetation indices. These results meant that appropriate vegetation indices should be utilized depending on the types of crop stress and the cultivation environment and the normalization-based vegetation indices measured from the different spatial scale has the minimized difference.