• 제목/요약/키워드: Vegetation Modeling

검색결과 128건 처리시간 0.027초

Modeling the long-term vegetation dynamics of a backbarrier salt marsh in the Danish Wadden Sea

  • Daehyun Kim
    • Journal of Ecology and Environment
    • /
    • 제47권2호
    • /
    • pp.49-62
    • /
    • 2023
  • Background: Over the past three decades, gradual eustatic sea-level rise has been considered a primary exogenous factor in the increased frequency of flooding and biological changes in several salt marshes. Under this paradigm, the potential importance of short-term events, such as ocean storminess, in coastal hydrology and ecology is underrepresented in the literature. In this study, a simulation was developed to evaluate the influence of wind waves driven by atmospheric oscillations on sedimentary and vegetation dynamics at the Skallingen salt marsh in southwestern Denmark. The model was built based on long-term data of mean sea level, sediment accretion, and plant species composition collected at the Skallingen salt marsh from 1933-2006. In the model, the submergence frequency (number yr-1) was estimated as a combined function of wind-driven high water level (HWL) events (> 80 cm Danish Ordnance Datum) affected by the North Atlantic Oscillation (NAO) and changes in surface elevation (cm yr-1). Vegetation dynamics were represented as transitions between successional stages controlled by flooding effects. Two types of simulations were performed: (1) baseline modeling, which assumed no effect of wind-driven sea-level change, and (2) experimental modeling, which considered both normal tidal activity and wind-driven sea-level change. Results: Experimental modeling successfully represented the patterns of vegetation change observed in the field. It realistically simulated a retarded or retrogressive successional state dominated by early- to mid-successional species, despite a continuous increase in surface elevation at Skallingen. This situation is believed to be caused by an increase in extreme HWL events that cannot occur without meteorological ocean storms. In contrast, baseline modeling showed progressive succession towards the predominance of late-successional species, which was not the then-current state in the marsh. Conclusions: These findings support the hypothesis that variations in the NAO index toward its positive phase have increased storminess and wind tides on the North Sea surface (especially since the 1980s). This led to an increased frequency and duration of submergence and delayed ecological succession. Researchers should therefore employ a multitemporal perspective, recognizing the importance of short-term sea-level changes nested within long-term gradual trends.

1 $\sim$ 6 GHz대역 수풀손실 특성 측정 및 모델링 (Measurement and Modeling of Vegetation Loss in the Frequency Range of 1 $\sim$ 6)

  • 박용호;정명원;한일탁;백정기
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2005년도 종합학술발표회 논문집 Vol.15 No.1
    • /
    • pp.163-168
    • /
    • 2005
  • Attenuation in vegetation is important, for both terrestrial and earth-space systems. However, the wide range of conditions and types of foliage makes it difficult to develop a generalized prediction procedure. Currently, there is also a lack of suitably prediction model and measured experimental data for vegetation loss. So in this paper, vegetation loss data for four different tree-species, including Dawn-redwood tree, Plane tree, Pine tree and Fir tree are obtained by measurement in the frequency range of 1.0 $\sim$ 6.0 GHz. The through or scattered component is calculated using a model based upon the theory of RET(Radiative Energy Transfer) and RET modeling parameters are extracted from the measured data.

  • PDF

Building Integrated Vegetation Systems into the New Sainsbury's Building Based on BIM

  • Lee, Dong-Kyu
    • 한국BIM학회 논문집
    • /
    • 제4권2호
    • /
    • pp.25-32
    • /
    • 2014
  • Today, there is a growing need of environment-friendly buildings, so-called 'green', facilities, and energy saving buildings to decrease environmental pollutants released into cities by construction activities. Green-Building Information Modeling (Green-BIM) is a purpose-built solution which supports to forecast energy consumption of 3-D model of a building by augmenting its primary 3-D measurements (width, height and depth) with many more dimensions (e.g. time, costs, social impacts and environmental consequences) throughout a series of sequential phases in the lifecycle of a building. The current study was carried out in order to integrate vegetation systems (particularly green roof and green wall systems) and investigate thermal performance of the new Sainsbury's building which will be built on Melton road, Leicester, United Kingdom. Within this scope, a 3-D building model of the news Sainsbury's building was first developed in $Autodesk^{(R)}$ $Revit^{(R)}$ and this model was then simulated in $Autodesk^{(R)}$ $Ecotect^{(R)}$once weather data of the construction site was obtained from $Autodesk^{(R)}$ Green Building $Studio^{(R)}$. This study primarily analyzed data from (1) solar radiation, (2) heat gains and losses, and (3) heating and cooling loads simulation to evaluate thermal performance of the building integrated with vegetation system or conventionally available envelops. The results showed that building integrated vegetation system can potentially reduce internal solar gains on the building rooftops by creating a 'bioshade'. Heat gains and losses through roofs and walls were markedly diminished by offering greater insulation on the building. Annual energy loads for heating and cooling were significantly reduced by vegetation more significantly through the green roof system in comparison to green wall system.

식물계를 고려한 지표-대기 상호작용의 수치모의 (Numerical modeling of Atmosphere - Surface interaction considering Vegetation Canopy)

  • 이화운;이순환
    • 한국환경과학회지
    • /
    • 제3권1호
    • /
    • pp.17-29
    • /
    • 1994
  • An one dimensional atmosphere-vegetation interaction model is developed to discuss of the effect of vegetation on heat flux in mesoscale planetary boundary layer. The canopy model was a coupled system of three balance equations of energy, moisture at ground surface and energy state of canopy with three independent variables of $T_f$(foliage temperature), $T_g$(ground temperature) and $q_g$(ground specific humidity). The model was verified by comparative study with OSUID(Oregon State University One Dimensional Model) proved in HYPEX-MOBHLY experiment. As the result, both vegetation and soil characteristics can be emphasized as an important factor iii the analysis of heat flux in the boundary layer. From the numerical experiments, following heat flux characteristics are clearly founded simulation. The larger shielding factor(vegetation) increase of $T_f$ while decrease $T_g$. because vegetation cut solar radiation to ground. Vegetation, the increase of roughness and resistance, increase of sensible heat flux in foliage while decrease the latent heat flux in the foliage.

  • PDF

CFD MODELING VEGETATED CHANNEL FLOWS: A STATE-OF-THE-ART REVIEW

  • Choi Sung-Uk;Yang Won-Jun
    • Water Engineering Research
    • /
    • 제6권3호
    • /
    • pp.101-112
    • /
    • 2005
  • This paper presents the state of the art of the CFD applications to vegetated open-channel flows. First, important aspects of the physics of vegetated flows found through the laboratory experiments are briefly reviewed. Then, previous CFD applications to one-dimensional vertical structure, partly-vegetated flows, compound open-channel flows with floodplain vegetation, and fully three-dimensional numerical simulations are reviewed. Finally, topics for further researches such as relationship between the resistance and flexural rigidity, additional drag due to foliages, and melting the experience of CFD with the depth-averaged modeling, are suggested.

  • PDF

일체형 하천호안블럭의 개발 및 모형실험 적용 (Invention and Hydraulic Model Test of Combined Block System in River Bank Protection)

  • 장석환;이창해;박상우
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.449-453
    • /
    • 2008
  • This research focused on analyzing and comparing between the results of hydraulic physical modeling and the results of numerical modeling of Grass Concrete which is newly developed in-situ block system. The physical model was built as a scale of 1:50 by Froude similitude measuring the water levels and the water velocities for before and after vegetation and the effects were analyzed after reviewing the results. In consequence, the water velocities were observed to decrease meanly 19.1%, and the water depth were determined to increase meanly 27.8% in case of the of design flood, $Q=200m^3/sec$. Moreover, the velocities were produced reduction effects of 27.2%, and the water levels were derived from addition effects of the highest 31.3% in case of the probability maximum flood(PMF), $Q=600m^3/sec$. To verifying the hydraulic physical modeling, the numerical modeling was conducted for a close examination of before and after vegetation. HEC-RAS model was for 1 dimensional numerical analysis and RMA-2 was for 2 dimensional numerical analysis. The results of the numerical simulation, under the condition of roughness coefficient calibration, shows similar results of the physical modeling. These satisfactory results show that the accomplished results of hydraulic modeling and the predicted results of numerical modeling corresponded reasonably each others.

  • PDF

드론 초분광 영상과 다중 식생지수를 활용한 태화강 유역 식생변화 분석 (Analysis of vegetation change in Taehwa River basin using drone hyperspectral image and multiple vegetation indices)

  • 김용석
    • 한국환경복원기술학회지
    • /
    • 제24권1호
    • /
    • pp.97-110
    • /
    • 2021
  • Vegetation index information is an important figure that is used in many fields such as landscape architecture, urban planning, and environment. Vegetation may vary slightly in vegetation vitality depending on photosynthesis and chlorophyll content. In this study, a range of vegetation worth preserving in the Taehwa River water system was determined, and hyperspectral images of drones were acquired (August, October), and the results were presented through DVI(Normalized Defference Vegetation Index), EVI(Enhanced Vegetation Index), PRI(Photochemical Reflectance Index), ARI (Anthocyanin Reflectance Index) index analysis. In addition, field spectral data and VRS-GPS(Virtual Reference System-GPS) surveys were performed to ensure the quality and location accuracy of the spectral band. As a result of the analysis, NDVI and EVI showed low vegetation vitality in October, -0.165 and -0.085, respectively, and PRI and ARI increased to 0.011 and 7.588 in October, respectively. For general vegetation vitality, it was suggested that NDVI and EVI analysis were effectively performed, and PRI and ARI were thought to be effective in analyzing detailed characteristics of plants by spectral band. It is expected that it can be widely used for park design and landscape information modeling by using drone image information construction and vegetation information.

Sentinel-1 & -2 위성영상 기반 식생지수와 Water Cloud Model을 활용한 토양수분 산정 (Soil moisture estimation using the water cloud model and Sentinel-1 & -2 satellite image-based vegetation indices)

  • 정지훈;이용관;김진욱;장원진;김성준
    • 한국수자원학회논문집
    • /
    • 제56권3호
    • /
    • pp.211-224
    • /
    • 2023
  • 본 연구에서는 합성개구레이더(Synthetic Aperture Radar, SAR) 기반의 식생을 고려하는 후방산란모델 Water Cloud Model (WCM)을 활용한 토양수분 산정 연구를 수행하였다. 금강 상류의 용담댐유역을 포함한 40 × 50 km2 영역의 Sentinel-1 SAR 및 Sentinel-2 MSI (Multi-Spectral Instrument) 영상을 수집하여 연구에 활용하였다. WCM의 식생변수로는 Sentinel-1 기반의 식생지수 RVI (Radar Vegetation Index), 탈분극비(Depolarization Rario, DR)와 Sentinel-2 기반의 NDVI (Normalized Difference Vegetation Index)를 활용하였다. WCM의 정모델링(forward modeling)은 토양수분과 후방산란계수의 특성이 유사한 3개 Group으로 나누어 수행하였다. 토양수분과 후방산란계수의 선형적인 관계가 명확할수록 Group의 모의 성능이 더 높게 나타났으며, 식생지수 별로는 NDVI, RVI, DR 순으로 정확도가 높았다. 토양수분을 모의하기 위해 모의된 후방산란계수를 반전(inversion)하였으며, 모의 성능은 정모델링 결과와 비례하였다. WCM 모의의 오류는 실측 후방산란계수 기준 약 -12dB를 기점으로 증가하는 양상을 보였다.

조절된 하천의 수문지형학적 변화와 식생 피복의 변화에 관한 기초 조사 - 낙동강 안동댐/임하댐 하류 하천 사례 (Basic Investigation about Hydro-Geomorphologic and Vegetation Cover Changes on the Regulated River - A Case of the Downstream River of Andong Dam/Imha Dam on the Nakdong River)

  • 우효섭;이동섭;안홍규;이창석
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.1335-1339
    • /
    • 2004
  • A hydro-geomorphologic change in a sand bed channel reach and vegetation expansion by changes in the How regime is analyzed in this study. Field and aerial photo surveys, basic hydrological analysis about flow regime change due to two dams, Andong Dam and Imha Dam, on the upstream river and computer modeling are conducted. Two Dams in the study reach have obviously affected downstream channel in many ways including the bed particle coarsening, vegetation expansion on the sandbars and following river channel braiding. The phenomenon of no vegetation on the large point bar in front of Hahwe Village seems due to disturbance of the sandbar surface probably due to the cross flow in the meander reach during the flood. Another reason for no vegetation is that the sandbar on this reach has lower subsurface water lovels, as compared with the others in the up- and downstream of the reach where vegetation expanded, which would hinder vegetation from germinating and growing on the sandbar.

  • PDF

일체형 식생호안블록 시스템 개발 및 수리특성 연구(I) -일체형 호안블록 개발 및 수리모형실험을 통한 적용성 검토- (Development and Hydraulic Characteristics of Continuous Block System in River Bank Protection (I) - Development and Application Review through Hydraulic Model Test -)

  • 장석환
    • 한국습지학회지
    • /
    • 제10권3호
    • /
    • pp.87-97
    • /
    • 2008
  • 본 연구는 현재 대부분의 자연형 하천에 적용되는 프리캐스트 호안블록 대신 현장 타설식 일체형 블록시스템을 개발하고 수리특성분석을 위하여 수리모형 실험을 실시하여 수위와 유속의 변화를 통하여 호안 적용성을 검토하였다. 기존의 프리캐스트 불록은 홍수 시 빠른 유속과 집중하중에 유실 및 탈락의 문제점이 나타나고 있으나 이를 보완한 일체형 호안블록 시스템은 홍수시나 수충부에 적합한 호안식생블록 시스템이다. 수리모형실험에서는 성덕댐이 위치한 보현천의 하도에 1/50 축척으로 모형을 재현하고 설계홍수량을 방류하는 조건으로 하도에서 원형과 개발된 블록의 식생유무에 대한 흐름 및 특성의 변화를 검토하였다. 검토결과, 설계홍수량 $200m^3/sec$에서 유속 저감 평균 10.1%, 수위 상승 평균 17.8%의 실험 결과를 얻었다. 연구(II)에서는 수치모형실험을 통하여 실험결과를 검증하고자 하였다.

  • PDF